HUMAN FACTORS IN FIELD EXPERIMENTATION DESIGN AND ANALYSIS OF AN ANALYTICAL SUPPRESSION MODEL

Michael Peter Mueller

Naval POSTGRRDUATE SCHOOL Monterey, California

Approved for public release; distribution unlimited

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETRG FORM
	3. necipient's catalog number
4. TITLE (and Subilile) Human Factors in Field Experimentation Design and Analysis.of an Analytical Suppression Model	5. TYPE OF REPORT \& PERIOO COVERED Master's thesis: September 1978
	3. penfonming ong. nepont nummer
Michael Peter Mueller Karl-Heinz Pietsch	8. Contmact on grant numbera)
Naval Postgraduate School Monterey, California 93940	10. PROGRAMELEMENT. PROJEET. TASK
Naval Postgraduate School Monterey, California	12. REpont oate September 1978 13. Numena of pages
Naval Postgraduate School Monterey, California 93940	13. SECURITY CLASS. (ot inte roport) Unclassified
	TS. ORCLASSIFICATION/OOWNGRAOING
16. oistribution statement (ot thio report) Approved for public release; distribution unlimi	

17. DISTMIDUTION STATEMENT (Of the abelract antered in Blook 20, if differont frem Report)
18. SUPPLEMENTATY NOTES
19. KEY WOPOS (Conifine on peveree alde If neceeear and ldenilty by block number)

Suppression model
Data analysis of suppression
20. A BSTAACT (Continue on reveree afde if neesecery and ldentity by biock munber)

The primary objective of this study was to provide a contribution to the phenomenon "Suppression" as an aspect within the military environment.

Analystical models explaining these aspects were developed in order to identify the influences to suppression. Techniques are examined for including the suppressive effects of weapon systems in Lanchester type combat models, which may be useful in wargame evaluations of military judgements, and in

force level planning. The study also provides techniques to analyze and fit experimental data to the analytical models.

The data to verify the models were obtained from related experiments performed by Combat Development Experimentation Command (CDEC), Fort Ord, California.

The result for the modelling approach to suppression indicates source dependences on quantitative as well as on qualitative features.

The functions are left quite general, although some functional forms are derived and discussed.

by

Michael Peter Mueller Captain Federal German Army
 Karl-Heinz Pietsch

Submitted in partial fulfillment of the
requinements for the degree cf

MASTER OF SCIENCE IN OPERATIONS BESEARCH

> from the

Naval postgraduate sChool September 1978

$$
\begin{aligned}
& \text { Thes } \\
& \text { N } x \text { है } 8 \\
& c .1
\end{aligned}
$$

ABSTRACT

The primary objective of this study was to provide a contribution to the phenomeron "Suppression" as an aspect within the military environaent.

Analytical models explaining these aspects were developed in order to identify the influences to suppressicn. Təchniques are examined for including the suppressive effects of weapon systems in Lanchester type combat models, which may be useful in wargame evaluations of military judgerents, and in force level planning. The study also provides techniques to analyze and fit experimental data to the analyさical models.

The data to verify the models were cbtained from related experiments performed by Combat Develofment Experimentation Command (CDEC), Fort Ord, California.

The result for the modelling approach to suppressicn indicates source defendences on guantitative as well as on qualitative features.

The functions are left guite general, although some functional forms are derived and discussed.

TABLE OF CONTENTS

I. FORMUIATION OF THE PROBLEM 7
A. INTRODUCTION 7
E. EACKGROUND 8
C. MILITARY SUEPRESSION IN COMEAT-ENVIRONMENT 9

1. Definitions 10
2. Structure of Fire Suppression Process 11
a. Signal process 13
b. Human process 14
c. Reaction Process. 15
d. Performance Effects Process 16
3. Suppression In Fíld Experimentations. 16
D. AEEROPRIATE OBJECTIVES 17
E. POSSIBLE ALTERNATIVES 18
II. CONSTFUCTION OF AN ANAYTICAL MODEL. 19
A. ASSUMPTIONS AND SIMPIIFICATIOIS 19
B. Rates FOR THE MODEL 20
4. Rates of Suppression 20
5. Rate of Rise 39
C. SUPPRESSION MODEL 48
III. FITTING EXPERIMENTAL DATA DESCRIBING SUPPRESSION 60
A. EXPERIMENTAI DESIGN 60
6. General aspects 60
7. Setup And Realisation 60
8. Presentation of The Data 63
B. Data ANALYSIS 63
9. Parameters Of The Model 63
10. Suppression Time 80
C. VEeification of the model 86
IV. DISCUSSION 95
Appendix A: ORIGINAL LATA $81 / 105 / 155 \mathrm{Mm}$ 97

Appendix $B:$ DERIVATION OF CONSTANT A 102
Appendix $C:$ DERIVATION OF VARIANCE 104
Appendix L : ANALYSIS OF RESIDUALS 81 Mu. 106
Appendix E: ANALYSIS CF RESIDUALS 105 AM 112
Appendix E : ANALYSIS CF RESIDUALS 155 MM 118
Appendix G: ANALYSIS OF RESIDUALS (METHOD 8) 124
Appendix $H: \quad$ AMALYSIS CF PARAMETERS K, ε 125
Appendir I: APL REGRESSION EROGRAMS 128
Appendix J: ANALYSIS OF SUPPRESSION TIME 129
Appendix K: PROGRALS FOR COMPUTING RATES OF RISE 132
LIST OF EIGUEES 133
BIBLICGRAPHY 134
INITIAL EISTEIBUTION LIST 138
电

I. FQRMULATION OE THE RROELEM

A. INTRODUCTION

In recent years considerations of $A u m a n$ Factors asçcts in the military has gained more and more importance. The study of psychological, physiological, and environmertal conditions and their influences on the performance of men in "Man-Machine-Systems" supports the develcpment of new doctrines, design cE weapon systems as well as training programs for troops.

One phenomenon in ailitary man-machine-systems is suppressicn. Modelling this phenomenon has only recentiy been given much atさention.

This is partly tecause modellers did not understand exactly neither the causes of suppression nor hoy it affects the course of combats.

There is an intuitive feeling that when a soldier or a combat unit is being fired upon, it will be less effective than when it is not receiving fire. This is generally referred to as suppression, but it can include much more. In the broadest sense, suppression can effect individuals, units, cr deafon systems in different types cf combat.

This paper will limit itself to individuals or small infantry units.

In order to be able to build up functional relationships based on the suppression idea, between different categories of people and time, this paper will first examine different rates as infut to analytical Lanchester-type-models. The rates will be based on stochastic aspects. The modelling is done under different viewfoints; their results will be compared and discussed.

In the second part of the thesis, the parameters cf the models will $t \in$ tested in a regression analysis against real world data which were placed at the vriters' disposal by CDEC.

The goal of this paper is not tc fresent a final framework cf suppression; however it may contribute to clarification of aspects of suppression, and help to embed it as a component in futurelarge size models.

B. BACKGROUND

The strains imposed on individuals in cur society are constantly increasing. Modern technologies and constant efforts for improvements of standaias of living lead $=0$ growing difficulties in adjustments or sometimes to complete failures to adjust. These facts create stress and we may cbserve that the degree of stress increases with the difficulty of the adjustment-problem.

The term stress will be used as a substitute for what might be called otherwise as anxiety, conflict, emotional distress, extreme environmental conditions, ego-threat. frustration, threat to security, tensicn or probably arousal. Stress can be thought of as the result of almost any envircnmental interference [Appley,p.2].

The stress-generating
features of the civilian environment are great, but the environment created by modern warfare possesses additional features which result in an increase of stress. The combat environaent created t y the weapon power of tine enemy causes a constant threat to life. The soldier has to operate under this threat and naturally be will respond with constantly recurring fear. This may break down the soldier's psychological and physiolcgical resistance.

Fear and anxiety in battle is conmon, being experienced Ly between 80 and 90 \% of combatants. Pains in the stomacn, fatique, dizziness, perspiration, andenhanced heart-beat are some vegetative correlates to fear and anxiety. Of course the moment when the individual soldier reaches his oreaking point varies and depends cn individual esychological and piysiological resistance and the severity of the battle.

One interesting observation from Agrell was that auditory sensations convey the stress of oattle most strongly and most directly. The psychclcgical effect of weapons is directly felated tc their sound level and the Erequency with which the sound occurs [Agrell,p.215].

Each enemy grenade causes the soldier to react constantly fith fear. Stress and fear can have a significant sensory operating characteristic, e. g. the detection threshold andor sensitiviry may decrease as a result of stress [NGltinan, G, Christianson, R.A. and Egstrom, G.H., p.423-430].
C. MIIITARY SUPPRESSICN IN CCMBAT-ENVIRONMENI

When weapons are used in combat, there are two types of effects that they bave. The first type of effect is physical damage or injury to the target and the second type of effect is psychological.

This second effect of a weapon has led to the term or concept "Coriat Suppression". There exist a general kelief that fire suffression is important, but the importance of suppression effect on combat outcomes as compared to the Effect cf other areas such as firefcwer, mobility, intelligence, command/control has not $b \in e n$ quantified adequately.

1. DGfinitions

CDEC, 1977
A more useful operational definiticn in terms of Eerformance capability changes is provided by the "Repcrt of the Army Scientific Adviscry panel ad hoc Group on fire Suppression".

Ad HOC Group, 1976
This definition emphasizes that supfression is not a

single effect which can be measured totally on a single guantitive scale. Suppression effects are multidimensional and the "amount of suppressicn" varies among these dimensions fe.g. fire impact points, soldier's characterists, and reaction to the rire, his combat experience etc.).

Suppressive fire in a combat environment can suppress a number of combat activities; for example: firing, search for and observation oÉ targets, movements of units or command and control.

2. Stํucture of Fire Surpression process

rire suppression is a complicated process involving many physical, environmental, physiological, behavioral, and operational variables. The important point to emphasize is that the rehavior involved is in response tc stimuli that criginate both externally (combat environment) and internally (fersonal background, training and experience) to the soldier suppressee. These aspects, however, are not included in this paper.

The intensity and duraticn of suppression can not be predicted from a knouledge of the comba二 environment alcne. It requires an analysis of the underlying motivarional and ciltural factors and of the context of the combat environment.

The Fig 1 [Ad Hoc Grcup, p. 36] shows a schematic descripticn of a process when suppressive fire is delivered and its affect on the combat result.

figure 1 - SChematic structure of the fire suppression EROCESS (Ad Hoc Group, p. 56)

The process is discribed by individual Euncticns.
a. Signal Process

The first process in fire suppression is the generaticn of signals frovided by suppressing weapons.

Inputs to this process are the
characteristics of the weapcn systems (caliber,
amount of porpellant, warheadtypes etc) and
the environmental characteristics (trajectory,
flatform, arrival points etc).

Characteristics of the weafon systems can vary in order to increase or decrease suppressive effects.

Some parameters that are considered to beimportant to suppressicn signals are:

Muzzle velocity (an increase in quzzle velocity is
associated with an increase in signal variables);

Caliber (as caliber increases, the firing signais and projectile signals increase along with lєthality):

Erojectile weight ($p \in n$ etration defends on weight and velocity at impact and increases shock coupling to ground) ;

Warhead charge weight (the explosive charge weight dotermines the energy in the pressure pulse);

Additional parameters like fire frequency and proximity of shots could also be mentioned.

Environmental characteristics are also variables but they can not $k \in d \in t \in r m i n e d ~ c o m p l e t e l y . ~$
Environment has an influence on the signal

generation -and transmission-process. For example, auditory signals that result from the impact of prcjectiles depend heavily on the nature of the object or material impacted. A soft yielding material such as dusty ground or sand receiving the impact of a projectile will produce a different fulse and sound than will hard unyielding ground under the saae impact.

Sound signals can be attenuated ky the shadowing effect of large obstacles or may be increased by echo or reverberation. Visual signals are strongly modified ry the condition of lighting. Haze, fog, rain, and snow act similarly to smoke and dust. The visual field is also reduced and interrupted by terrain and other obstacles.

The envircmaent modifies the produced stimuli when they are transmitted to the location of the suppressee. Cutputs oí chis process are the atcenuated sensory signals that become imputs to the huana sensory receftors.
b. Human process

Many of the determinants of the soldier's performance on the battle field are unkown or at least uncertain - thought of as influenced by chance factors. This emphasizes the difficulties of predicting human benavior in a combat environment. Tae human process (sensory and perceftion) converts the received signals into a perception of the risk. Eattlefield stimuli effecting the individual are detected and converted into sensory data $k y$ a process such as vision and audition, so the sensory frocess suggests that the weapon systems stimuli relevant to suppression are the
-loudness, and
-visual impact.
Ihere exist moderating factors that influence the operating characteristcs of the sensory frocess and that determines which stimuli are effective.

Sensory
modifiers
earflugs,
night-vision-devices) serve to change users' sensitivity range. A major effect of these devices is to change the salience of stimuli.

High concentration on an activity or a high level of effort on an activity (e.g. missile-gunner is tracking a target or reloading his system) may increase the absolute threshold.

Ine posture of a soldier (standing or sitting) and the sequence of posture (cbserving; ducking, observing) influences the sensory capabilities (e.g. observing for 10 seconds coniinuously is not equivalent to observing 5 seconds , ducking 10 seconds and observing 5 seconds).

The perception process integrates sensory and other information into a perception or the risk. Risk refers tc the uncertainty of damage, injury, or loss. It characterizes decision situations in which the consaquences of choosing an action are uncertain.

If there is no uncertainty in the possible cutcome, there is no risk.

Efrceived risk is a function of uncertainty and the subjective value the individual associates with each outcome.

Eerceived risk represents the output of the combined sensory and perception process. It depends cn the individual's experience and training in assessing risk from sensory information. Also cover providd by the environment and the individual's pcsture may influence risk perception.
C. Reaction Process

Given the infut perceftion of risk, this process causes chysical and mental reactions, which depend on the

$$
\begin{aligned}
& \text {-current mission } \\
& \text {-task } \\
& \text {-activity }
\end{aligned}
$$

-combat training doctrine and experience
-group dynamics and
-the quality of leadership.
It is conjectured that two individuals who perceive the same degree of high risk, but who have different amounts of ccmbat engagement experience, might be likely to, react differently tc the risks.

The soldier's reaction is also influenced ty his current state. A soldier who has recently ducked may be more likely to duck than one who has not, given the same delivered fire.

Prior reaction or sequence of reactions may ke a good predictor of the coming reaction.
d. EGrformance Effects Process

Given the reactions of the human behavior process, it is conjectured that these directly aftect the performance of certain activities of the suppressee in a calculable yay.

If for example the suppressee takes cover, ie may fire less often and less accurately anj also might be less vulnerable. The magnitude and duration of these changes in performance $a r \in d \in p e n d \in n t$ on the characteristics of the system employed by the suppressee and the target of his activity.

So the nature and duration of change in EErformance capabilities is determined by the performance effects process.
3. Superession In Eield Experimentations

A fire suppression research program reguires significant experimentation on behavioral attitudes and reactions tc risk. This necessity causes tremendous difficulties in trying to induce actual behavior in soldiers

in field exferiments. Former studies shcwed, that the soldiers felt true psychological stress only in situations in which they believed that they ware in real danger. Such situations are difficult to contrive and to control. Social and ethical limits and legal regulations preclude the introduction of actual physical risk. Scldiers must be taught the "rules and risk" defined in that context. The success of playing the role, being an individual Farticipating in a combat engagement, defends on the scldiers' motivation and uillingness.

Because of these reasons and the aultidimensional shape of che fire supfression process as nentioned earlier, suppression in field experimentations may ke restricted onlig to some variables involved in this process.
D. APPRORRIATE OBJECTIVES

The overall objective of a fire suppression research should $b \in$ to relate charges in performance caparilities caused by fire suppression [Ad Hoc Grcuf, p. 110]. Fesponding more directly the follouing objectives may be $d \in t \in \min \in d:$

Indicating the effects of suppression on combaz Iesults, i.e. to develop rates cf suppression. These values may be compared to other effected areas and frobably employed in computer sirulations. These numbers represent two kinds of variables: Weapon system variables and human suppressicn performance, given operational and environmental conditions.

Letermining characteristics cf suffressive fire systems, characteristics which should be assigned to such a weapon system. Results are develofed Experimentally . Chapter III E. will display some evaluated parameters and constants ficr the developed
model. which may also represent the suppressive characteristics of the used weapon systems.

Reducing suppressive effects. days to reduce the effect of suppressive fire may also be considered as an appropriate objective of suppression researci. Special training or equipment can be assigned to tne soldiers or new tactics can be developed. This objective is beyond of the research of this paper.
E. POSSIBLE ALTERNATIVES

In order to get information adout the fire suppression Frocess, previous investigations were based on interviews and questionaires, because valuable information of the fire suppressicn frocess is stored in the minds of combat veterans. Studies on veterans of the Vietnam conflict and the wars cf the Near East would be especially useful, since newer weapons were employed and the combats were shorter and wore intersive.

These studies may provide a good insight tc the suppressicn frocess and/or may also deliver valuable infuts for the modelling approach.

II. CONSTRUCTION OF AN ANALYTICAL MODEI.

a.

ASSUMPTIONS AND SIMPLIFICATIONS

Based on the foregcing discussion, the fcilowing model is a detailed model [Taylor, 1978,p.12] which starts cut by considering the behavior aspect of a human being under the influence of artillery fire power. It is assumed that such
 scenario, can be used profitably to investigate system dynamics of lore complex models. The value of the model derives from the fact that it forms intuitively plausible and transfarent sutsets in a large compcsition of other subsets which determine the basic structure of the complex cperational model. In other words, the whole is described in terms of the sum of its parts.

The basic concern of the analytical model developed here will be to model the kehavior of an individual experiencing aこtillery fi=e, considered as a function of time, where that behavior depends upon ammunition types and location of detcnating rounds.

On the basis of particular assumptions and simplificaticns it will be possible to apply the results cttained to a group of people (a force) on a battelfield. The result of these considerations all provide a relationship between time and tae actual number of feople affected by the fire power of the artillery. This last step of the rodel is carried out by using Lanchester type equations, so called after the pioneering wark of F. \boldsymbol{H}^{\prime}. Lanchester. Finally, the models anable one to estimats the tctal firepower of the force at any point in time; depletion
of total firepower is caused by attrition and by suppressica.
E. RATES FOR THE MODEL

1. Rates $\underline{\underline{f}}$ Suppr $\underline{\underline{S}} \mathbf{S i}$ ion

The rasic considerations in the preceading paragraph support the assumpticns, that the behavior of a suppressee can be expressed by a conditional probability of suppression as a functicn of miss distance r and aspect angle θ. This function is represented by the family of surfaces of the form:

$$
\begin{equation*}
P(S / \theta, r)=\exp \left[-\frac{I}{K} r^{2}(1-\varepsilon \cos \theta)\right] \tag{2.1}
\end{equation*}
$$

Where $P(S / \theta, I)$ is the conditional probability of suppression given that a particular round impacts under a certain aspect angle θ and a certain miss distance r away ircm the foxhole.

The line along the angle $\theta=0^{\circ}$ is identical with the line of sight. It is the main direction of ckservation.

The constant K and E are parameters, which are determined by the experiment itself and by the environiontal conditions.

They can be influenced by factors as discussed in chapter I wich may be recalled here briefly.
-type of ammunition
-frequency of arrival of rounds

- perceptual damage
-total time $s p \in n t$ in the foxnole (learning process)


```
-noise appearance of the rounds
-flash light intensity of the rounds
-ferformance
-personal factors lik\epsilon age, persoual condition, etc.
-degree of stress
-motivation
```

The computational evaluation of the constant K and ε will be performed in chapter III B. and C. In particular it will be important to determine K as it varies with different types cíamquniticn.

The mathematical conditions for the two parameters k and ε are:
$0<\varepsilon<1$
$K>0$
If θ is held fixed, $0^{\circ}<\theta<360^{\circ}$, and $P(S / \theta, r)$ varies between $0<P(S / \theta, I)<1$ we obtain a family of functions, which is two-dimensional and shous an exponential relaticnship上ミtween $E(S / \theta, I)$ and I.

This is illustrated in the following figure, where tie angle θ is held fixed at C° and 180°. The farameters k and ε are assumed as being 1500 and 0.7 respectiv 1 .

r/m = distance/meter

Figure 2-FUNCTICN $P\left(S / \theta_{0}, r\right)=\exp \left[-\frac{1}{K} r^{2}(1-\varepsilon \cos \theta)\right]$

If $c n$ the other hand $P(S / \theta, r)$ is fixed, $0<P(S / O, L)<1$, and the equation is solved for $r, w \in$ will obtain an "egg-shaped" function with iso-levels of Erobability of suppression $P(S / \theta, I)$. The foxhole is located in the middle of the coordinate systea. Along $\theta=0^{\circ}$, the range r is a max for a certain fixed frobability cf suppression. while at $\theta=180^{\circ}$, I is a min for the same probability.

The runction takes the form:

$$
\begin{equation*}
r^{2}=\frac{-K \ln P(S / \theta, r)}{1-\varepsilon \cos \theta} \tag{2.2}
\end{equation*}
$$

The follcwing graph shows the family of functions for 4 representative selective protabilities of suffressions.

$$
\begin{equation*}
E(S / \theta, I)=0.1 \cdot i \quad i=1,2,3,4 \tag{2.3}
\end{equation*}
$$

The parameters K and ε are again assumed to be 1500 and 0.7 respectiv $\in 1 y$.

$$
r / m=\text { distance/mater }
$$

Figure 3 -. ISOLINES $\quad r^{2}=\frac{-k \ln 0.1 \cdot i}{1-\varepsilon \cos 0}, \quad i=1,2,3,4$.
-

These "egg-shaped"-functions of iso-crobabilities of suppression simulate the reaction of human beings looking along the main axis $\theta=0^{\circ}$ in a very simple way. The Euncticns take into account the visual and accoustical perception resulting from any given detonation of a round, where ncise and light are the major stimuli.

One could think of other functions wich simulate the behavior of an antitank gunner exposed tc artillery rounds for instance:

$$
\begin{equation*}
P(S / \theta, r)=L \cdot \exp \left[-\frac{1}{K} r^{2}(1-\varepsilon \cos \theta)\right] \tag{2.4}
\end{equation*}
$$

Ihis type cifunction allows the probability of suppression $E(S / \theta, r)$ to te smaller than one at its maximal value and has the same general behavior as the functicn before. As a third modification:

$$
\begin{equation*}
\left.P(S / \theta, r)=\exp \left[-\frac{1}{K}|r|(]-\varepsilon \cos \theta\right)\right] \tag{2.5}
\end{equation*}
$$

these functicns have the disadvantage that they have a discontinuity at r=0. The integration which is necessary in the follcwing derivation is more difficult than the chosen one.

However, the crosscut secticns of these functions are not "egg-shaped" iso-functions but rather simple conic sections (ellipses) where the foxhole is located in the center of one focus point.

The paper will continue with the function first described in (2.1), because of its simplicity and variety cf applicaticn.

In order to derive a rate of suppression for the model, it is necessary to evaluate now, in a second step,
the unconditicnal frobability of suppressicn $P(S)$ for any incoming round, no matter where it will impact around the foxhole. This uill be performed by matching the conditional probability $P(S / \theta, r)$ with the area-hit-probatility $P(A)$.
consequently, to the engagement procedures of the artillery, the targets which shall be suppressed by the artillery are categorized as small personal targets. This implies that the mean point of impact (MPI) of a given set of rounds lies on the target, which means also, that the density has its max value at that point. according to the U.S. Army Field Manual FM 6-161-1 page 2-2 it can be ascertained that the MPI-error is destributed normally with its mean at the aim-point. Thus it will be hypothesised that in such a case the distribution of inccming rounds is tivariate ncrmal with parameters

$$
\begin{align*}
& \mu_{1}=0 \\
& \mu_{2}=0 \tag{2.6}\\
& \sigma_{1}=\sigma_{2}=\sigma
\end{align*}
$$

In crder tc simplify the model, it is frcposed that the dispersion of rounds expressed in the standard deviaticn is Equal in all directions. With

$$
\begin{equation*}
\rho=0 \tag{2.7}
\end{equation*}
$$

ac coraelaticn is assumed between hozizontal and vertical deviation. The normality is also preserved if more than one artillery gun is shooting. The essential change which has to be made when a whole artillery unit will deliver the rcunds will be the value of the standard deviation σ In acidition, σ is determined by factcrs like:
disp€rsion
the fact that the location of the target $i \approx o n l y$ estimated and an artillery unit delivers rounds in a fire area.

type of ammunition
conditions of $t h \in$ weapon systems (precision) ballistic properties of the rounds
distance to target
califer
wind and other weather conditions.
It follows from the kivariate normal density for artillery hits:

$$
\begin{align*}
f\left(x_{1}, x_{2}\right)= & \frac{1}{2 \pi\left(1-\rho^{2}\right) \sigma^{2}} \tag{2.8}\\
& \times \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x_{1}-r_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x_{1}-r_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-r_{2}}{\sigma_{2}}\right)+\left(\frac{x_{2}-r_{2}}{\sigma_{2}}\right)^{2}\right]\right\}
\end{align*}
$$

and by inserting the previous mentioned assumptions and changing to folar coordinates:

$$
\begin{align*}
r^{2} & =x_{1}^{2}+x_{2}^{2} \\
\cos \theta & =\frac{x_{1}}{r} \tag{2.9}
\end{align*}
$$

that the unconditional probability of suppression $P(S)$ can be writter in the form:

$$
\begin{equation*}
P(S)=\int_{\theta=0}^{0=2 \pi} \int_{r=0}^{r=\infty} P(S / \theta, r) \cdot f(r, \theta) d \theta r d r \tag{2.10}
\end{equation*}
$$

Fecall that an area $\in l \in \operatorname{lent}^{\prime}$ in polar coordinatas can be expressed:

The conditicnal grobability of suppression is

$$
\begin{equation*}
P(S / \theta, r)=\exp \left[-\frac{1}{K} r^{2}(1-\cos \theta)\right] \tag{2.11}
\end{equation*}
$$

and the density for artillery hits $f(r, \theta)$ is

$$
\begin{equation*}
f(r, \theta)=\frac{1}{2 \pi \sigma^{2}} \exp \left[-\frac{1}{2}\left(\frac{r}{\sigma}\right)^{2}\right] \tag{2.12}
\end{equation*}
$$

inserting both into the expression above, we can perfora the integraticn:

$$
\begin{equation*}
P(S)=\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=\infty} \exp \left[-\frac{1}{K} r^{2}(1-\varepsilon \cos \theta) \frac{1}{2 \pi \sigma^{2}} \exp \left[-\frac{1}{2}\left(\frac{r}{\sigma}\right)^{2}\right] \cdot d\left(\frac{r^{2}}{2}\right) d \theta\right. \tag{2,13}
\end{equation*}
$$

After a change of integration variable;

$$
\begin{array}{lr}
z_{r=0}=0 & \frac{r^{2}}{2}=z \\
d\left(\frac{r^{2}}{2}\right)=d z & z_{r \rightarrow \infty}=\infty
\end{array}
$$

we find

$$
\begin{align*}
P(S)= & \int_{\theta=0}^{\theta=2 \pi} \int_{z=0}^{z=\infty} \exp \left[-\left(\frac{2}{K}(1-\varepsilon \cos \theta)+\frac{1}{\sigma^{2}}\right)\right] \cdot \frac{1}{2 \pi \sigma^{2}} d z d \theta \tag{2.15}\\
P(S)= & \int_{\theta=0}^{\theta=2 \pi} \frac{1}{-2 \pi \sigma^{2}\left(\frac{2}{K}(1-\varepsilon \cos \theta)+\frac{1}{\sigma^{2}}\right)} \\
& \cdot \exp \left[-\left.\left(\frac{2}{K}(1-\varepsilon \cos \sigma)+\frac{1}{\sigma^{2}}\right) \cdot z\right|_{z=C} ^{z=\infty}\right] d \theta \\
P(S)= & \int_{\theta=0}^{\theta=2 \pi} \frac{1}{2 \pi \sigma^{2}\left(\frac{2}{K}-\frac{2 \varepsilon}{K} \cos \theta+\frac{2 K}{2 K^{2}}\right)} \cdot d \theta \\
P(S)= & \frac{K}{4 \pi \sigma^{2}} \int_{\theta=0}^{\theta=2 \pi} \frac{1}{\left(1+\frac{K}{2 \sigma^{2}}\right)+(-\varepsilon) \cos \theta} \cdot d \theta \tag{2.16}
\end{align*}
$$

by reflacing

$$
\begin{equation*}
b=1+\frac{k}{2 \sigma^{2}}, \quad c=-\varepsilon \tag{2.17}
\end{equation*}
$$

the integral reduces to a known form which can be solved.
$P(S)=\frac{K}{4 \pi \sigma^{2}} \int_{\theta=0}^{\theta=2 \pi} \frac{d \theta}{b+c \cdot \cos \theta} \quad$ where $b^{2}>c^{2}$
$P(S)=\frac{K}{2 \pi \sigma^{2}} \int_{\theta=0}^{\theta=\pi} \frac{d \theta}{b+c \cdot \cos \theta}=\frac{K}{2 \pi \sigma^{2}}\left[\frac{2}{\sqrt{b^{2}-c^{2}}} \arctan \frac{(b-c) \tan \frac{\theta}{2}}{\sqrt{b^{2}-c^{2}}}\right]_{0}^{\pi}$
$P(S)=\frac{K}{2 \pi \sigma^{2}} \cdot \frac{2}{\sqrt{b^{2}-c^{2}}} \cdot \frac{\pi}{2} \Rightarrow P(S)=\frac{K}{2 \sigma^{2} \sqrt{b^{2}-c^{2}}}$.

Inserting back the expressions for b and c, one obtains:

$$
\begin{equation*}
P(S)=\frac{K}{2 \sigma^{2} \sqrt{\left(1+\frac{K}{2 \sigma^{2}}\right)^{2}-\varepsilon^{2}}} \tag{2.19}
\end{equation*}
$$

After the data analysis in chafter III b. and C. where the parameters K, ε and σ will be determined, it will be fossible to evaluate the probability of suppression
-20

E(S) according to the freceeding formula.
This probability adequately models those cases where temporary suffression is the only possible response to a given detonation of a round. It may be useful to exfand the model by introducing a second paired outcome at any given impacting rcund. Until now, we had one paired outcome:

The individual was either suppressed
cr not suppressed.
In additicn tc these $w \in$ consider a second paired outcome:
The individual is permanently suppressed by being wourded or killed
or not permanently suppressed.
If we focus the attention on modeling the effects under this expansion, it is fossible to evaluate a nev probalility cf suppression $P(S)$ and a probability of kill $P(K)$ by waxing the following assumptions:

The conditional probability of kill unlike the condtional probability of suppression does not deperd on tine aspect angle θ.

It can be represented by a smooth curve of the fcllcoing form:

$$
\begin{equation*}
P(K / r)=\exp \left(-\frac{1}{H} r^{2}\right) \tag{2.20}
\end{equation*}
$$

where a is a positive constant i.s. H \boldsymbol{H}. This functicn as selected on intuitive grounds rather ther based on real-world data. Taking a vertical cut thrcugh the surface function above along any angle θ, one obtains the following figure. The parameter H is arbitrarily chosen as being $H=50$. Clearly this parameter is a function of different factors like terrain and ammunition.

$$
r / m=\text { distance/meter }
$$

Figure. $4-$ FUNCTION $\quad P(K / r)=\exp \left(-\frac{1}{H} r^{2}\right)$

If on the other hand $P(K / \Sigma)$ is fixed, $0<P(K / \Sigma)<1$, and the equation is solved for r, one will obtain concentric circles with iso-levels of frobability of kill $P(K / r)$ around the foxhole.

The function has the form:

$$
\begin{equation*}
\mathbf{r}^{2}=-\mathrm{H} \cdot \ln \mathrm{P}(\mathrm{~K} / \mathrm{r}) \tag{2.21}
\end{equation*}
$$

The following $E i g 5$ shows the family of functions for 4 representative selective probabilities cf suffressions.

$$
\begin{equation*}
P(K / I)=0.1 \cdot i \quad i=1,2,3,4 \tag{2.22}
\end{equation*}
$$

The parameter H is again chosen to be 50.

$r / m=$ distance/meter

Figure 5 - ISOLINES $r^{2}=-H \cdot \ln P(K / r)$

The concentricity around the foxhcle expresses the Eact that no matter in which direction the gerson in the hole is looking the kill effect is just determined $k y$ the distance. It would be beyond the paper to verify this assumption , and it would be extremely difficult to collect data for it. The reader must be content for the moment with the earlier presented intuitive argument.

This newly introduced function leads to a revision cf the probability of suppression $P(S)$ and the evaluation of the unconditicnal frobability of kill, $P(K)$. The density assumed earlier for artillery hits is used again:

$$
\begin{equation*}
f(\theta, r)=\frac{1}{2 \pi \sigma^{2}} \exp \left[-\frac{1}{2}\left(\frac{r}{\sigma}\right)^{2}\right] . \tag{2.12}
\end{equation*}
$$

Erobability ci suppression $P_{k}(S)$ but not kill is:

$$
\begin{equation*}
P_{K}(S)=\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=\infty} P(S / 0, r)[1-P(K / r)] \cdot f(0, r) r d r d \theta \tag{2.23}
\end{equation*}
$$

femark: The subscript k at p_{K} is used to indicate that this suppressicn probability appears together with tae crobability cf kill P(K).

The expression $P(S / \theta, \Gamma) \cdot(1-P(K / \Sigma))$ means that a round suppressed $k u t$ did not kill the individual at (r, θ).

Frobability of kill $P(K)$

$$
\begin{equation*}
P(K)=\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r \rightarrow \infty} P(K / r) \cdot f(\theta, r) r d r d \theta \tag{2.24}
\end{equation*}
$$

The computation for $F_{k}(S)$ and $P(K)$ runs along similar lines as in the earlier evaluation of $P(S)$. FCr the specific functicns we find:

$P(K)=\int_{\theta=0}^{0=2 \pi} \int_{r=0}^{r=\infty} \exp \left(-\frac{1}{H} r^{2}\right) \cdot \frac{1}{2 \pi \sigma^{2}} \exp \left[-\frac{1}{2}\left(\frac{r}{\sigma}\right)^{2}\right] d\left(\frac{r^{2}}{2}\right) d \theta$
$P_{K}(S)=\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=\infty} \exp \left[-\frac{1}{K} r^{2}(1-\varepsilon \cos 0)\right]\left[1-\exp \left(-\frac{1}{H} r^{2}\right)\right]$

$$
\begin{equation*}
\cdot \frac{1}{2 \pi \sigma^{2}} \exp \left[-\frac{1}{2}\left(\frac{r}{\sigma}\right)^{2}\right] d\left(\frac{r^{2}}{2}\right) d \theta \tag{2.26}
\end{equation*}
$$

change again the variakle of integration

$$
\begin{equation*}
\frac{r^{2}}{2}=z ; \quad z_{r+\infty}=\infty ; \quad z_{\mathrm{r}=0}=0 ; \quad d\left(\frac{r^{2}}{2}\right)=d z \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
P(K)=\int_{\theta=0}^{\theta=2} \int_{z=0}^{z \rightarrow \infty} \frac{1}{2 \pi \sigma^{2}} \exp \left[-\left(\frac{1}{H}+\frac{1}{\sigma^{2}}\right) z\right] \mathrm{d} z \mathrm{~d} \theta \tag{2.27}
\end{equation*}
$$

$$
\begin{equation*}
P(K)=\frac{1}{\left.\left(\sigma^{2} / H\right)+1\right)} \tag{2.28}
\end{equation*}
$$

$$
\begin{align*}
P_{\mathrm{K}}(\mathrm{~S}) & =\int_{0=0}^{\theta=2 \pi} \int_{z=0}^{z+\infty} \exp \left\{-\left[\frac{2}{\mathrm{~K}}(1-\varepsilon \cos \theta)+\frac{1}{\sigma^{2}}\right] z\right\} \frac{1}{2 \pi \sigma^{2}} \mathrm{~d} z \mathrm{~d} \theta \tag{2.29}\\
& =-\int_{\theta=0}^{\theta=2 \pi} \int_{z=0}^{z \rightarrow \infty} \frac{1}{2 \pi \sigma^{2}} \exp \left\{-\left[\frac{2}{\mathrm{~K}}(1-\varepsilon \cos \theta)+\frac{2}{\mathrm{H}}+\frac{1}{\sigma^{2}}\right] z\right\} \mathrm{d} z \mathrm{~d} \theta(2.30)
\end{align*}
$$

Becognizing that the first double integral is exactly the same as kefore we can simplify to

$$
P_{K}(S)=\frac{K}{2 \sigma^{2} \sqrt{\left(1+\frac{K}{2 \sigma^{2}}\right)^{2}-\varepsilon^{2}}}-\int_{\theta=0}^{\theta=2 \pi} \frac{1}{2 \pi \sigma^{2}\left(\frac{2}{K}-\frac{2 \varepsilon}{K} \cos \theta+\frac{2}{H}+\frac{1}{\sigma^{2}}\right)} d \theta
$$

-

$$
\begin{equation*}
P_{K}(S)=P(S)-\frac{K}{4 \pi \sigma^{2}} \int_{\theta=0}^{0=2 \pi} \sqrt{\left(1+\frac{K}{2 \sigma^{2}}+\frac{K}{H}\right)+(-\varepsilon) \cos \theta} \tag{2.32}
\end{equation*}
$$

The integration can be done by using the same formula as for the computation of $P_{K}(S)$, except that this time b is:
$b=\left(1+\frac{K}{2 \sigma^{2}}+\frac{K}{H}\right)$
From this it follows:

$$
\begin{equation*}
P_{K}(S)=P(S)-\frac{K}{2 \sigma^{2} \sqrt{\left(1+\frac{K}{2 \sigma^{2}}+\frac{K}{H}\right)^{2}-\varepsilon^{2}}} \tag{2.34}
\end{equation*}
$$

$P_{K}(S)=\frac{K}{2 \sigma^{2}}\left[\frac{1}{\sqrt{\left(1+\frac{K}{2 \sigma^{2}}\right)^{2}-\varepsilon^{2}}}-\frac{1}{\sqrt{\left(1+\frac{K}{2 \sigma^{2}}+\frac{K}{H}\right)^{2}-\varepsilon^{2}}}\right]$

After having derived the desired probapilities as summarized on the following figure, we are able to evaluate the different rates of temporary and permanent suppression. Ey assuming a certain fire rate λ_{f} with which the artillery is firing in the area where the anti-tank gunners are located, the different rates will have tie following form.

Iwo-event model (unsuppressed-suppressed)

$$
\begin{equation*}
\text { Rate of suppression } \lambda_{s}=\lambda_{f} P(S) \tag{2.36}
\end{equation*}
$$

电

```
Rour-event-model (unsuffressed-suppressed-survived-killed)
```

Rate of suppression $\lambda_{S}=\lambda_{f} \cdot P_{k}(S)$

Rate cf killing $\quad \lambda_{k}=\lambda_{f} P(K)$

One important rate must still be developed; it is the rate cf rise from a suppressed state. We model this by stochastic frocess $m \in t h c d s$.
嵒

$$
\begin{equation*}
P(S)=\frac{K}{2 \sigma^{2} \sqrt{\left(I+\frac{K}{2 \sigma^{2}}\right)^{2}-\varepsilon^{2}}} \tag{2.19}
\end{equation*}
$$

$$
\begin{equation*}
P(K)=\frac{1}{\frac{\sigma^{2}}{H}+1} \tag{2.28}
\end{equation*}
$$

$$
\begin{equation*}
P_{K}(S)=P(S)-\frac{K}{2 \sigma^{2} \sqrt{\left(1+\frac{K}{2 \sigma^{2}}+\frac{K}{W}\right)^{2}-\varepsilon^{2}}} \tag{2.34}
\end{equation*}
$$

2. Gate Of Rise

The model so far represents a situation jn which there are three possikle outcomes. When any independent round impacts, the ferson in the foxhole is assumed to be either

```
suppressed,
nct suppiessed, or
is killed.
```

Naturally this is only true if we assume that he is always back up again when the next round impacts. This fact krings up the necessity of considering the process along the tine axis.

Efcause of the complexity of a stochastic process which reflects the behavior situation of an individual exposed tc arriving artillery rounds, it seems useful to start uith a very simple process, in which the time of suppression $k y$ a particular rcund is considered to be fixed. In a next step, this constant response tiqe is randcmized over the number of people under consideraticn, i.e. each individual has his own random time which however is assumed constant for the process itself.

Finally, the response time of a single person ray be considered to be a random variable coming from a certain distributicn.

Eoth appraches are simple, and represert a first atterpt to describe the actual situation in different ways. Certainly the supfression time can also be considered as a function of
 the aspect angle θ, or of a combination of all. But these dependencies would rather complicate the mathematical derivations and lead beyond this study.

Both processes consider rounds that arrive in the
neighborhood of the foxhole in accordance with a poisson Erocess having a rate λ_{f}. The model consists of two process states. One is the "up"-state wich means that the person in the hole is unsuppressed and able to act according to his mission. The other state is termed the "down"-state which results from an incomming round and a possitle reaction to it in the form of suppression. In this state the perscn is not able to fullfill his mission, he is physically down.

The first process assumes that the person in the foxhole changes froa the "down"-state to the "up"-state only if he recognizes a gap of at least T time units before the appearance of the next round. This means that the "down"-state ias a duration of exactly time T if no rounds arrive in the time interval ($0, T$). The time I in connection with such a process may be called the critical gap. [Gaver,p.481]. The following figure shows the basic relationship:

SECOND CASE : $t^{\prime} \leqslant T$

Figure 7 - SCHEMATIC DESCRIPTION OF THE MODEL

For the time being T is assumed fixed. However it is more reasonable to descrife it by a random variable, since the time gap T is determined by factors like learning, accustoming to, cr overcomming of, fear, stress etc. The assumption of a fixed T has to ke changed in a later step, where it will be defined as a randoll variable.

Furthermore, the change from the "up"-state to the "down"-state is accomplished by arriving rounds to which the ferson reacts through suppression ("down"-state) with tne earlier computed probatility of suppression $P(S)$.

Now let τ be equal to the total time of being continually suppressed. It is possible tc define τ in the fcllowing way:

$$
\tau=\left\{\begin{array}{l}
T \text { if no sufpressing rcund arrives in }(0, T) \tag{2.39}\\
t^{\prime}+\tau^{\prime} \text { if the } n \in x t \text { suffressing round falls } \\
b \in f o r e ~
\end{array}\right.
$$

In this case the random variable τ is an indecendent version cf the randcu variable τ.
according to this definition it is possible to compute the expected value of τ which represents the mean time spent in the "down"-state, or the mean time of being continually suppressed. The symbol used for it will be E[T].
In order to get the arrival rate cf suppressing
rcunds which contribute to the time of being suppressed, we have to multiply the fire rate λ_{f} with the frobability of suppression, $P(S)$, which was \in valuated in chafter II.B.1. Me cbtain

$$
\begin{equation*}
\lambda_{s}=\lambda_{f} \cdot P(S) \tag{2.36}
\end{equation*}
$$

First we have to state the following two expectations:

$$
\begin{align*}
E[\tau \mid \text { no round in } T] & =T \\
E[\tau \mid \text { round in } T] & =t^{\prime} \tag{2.40}
\end{align*}
$$

Where $t^{\prime}=$ time of second suppressing round. Removing the condition on t^{\prime} leads to expected time of $t \in i n g$ supfressed under the influence of incomming rounds.
$E[\tau]=T \cdot e^{-\lambda} s^{T}+\int_{0}^{T} e^{-\lambda} s^{t^{\prime}} \lambda_{s} d t^{\prime}\left[t^{\prime}+E[\tau]\right]+E[\tau]\left[1-e^{-\lambda s^{T}}\right]$
$E[\tau]=T \cdot e^{-\lambda s}+\lambda\left[\frac{e^{-\lambda} s^{t}}{\lambda_{s}^{2}}(-t-1)\right]_{0}^{T}+E[\tau]\left(1-e^{-\lambda} s^{T}\right)$
$E[\tau]=T e^{-\lambda_{s} T}+\frac{1}{\lambda}\left[1-\left(1+\lambda_{s} T\right) e^{-\lambda_{s} T}\right]+E[\tau]\left(1-e^{-\lambda} s^{T}\right)$
$E[\tau]=T+\frac{1}{\lambda e^{-\lambda_{s} T}}\left[1-\left(1+\lambda_{s} T\right) e^{-\lambda} s^{T}\right]$
$E[\tau]=\frac{1}{\lambda_{s}}\left(e^{\lambda_{s}^{T}}-1\right)$
inserting $\lambda_{s}=\lambda_{f} \cdot P(S)$ we obtain

$$
\begin{equation*}
E[\tau]=\frac{1}{\lambda_{f} P(S)}\left(e^{\lambda_{f} P(S) \cdot T}-1\right) \tag{2.43}
\end{equation*}
$$

Extending the idea for a fixed time gap by applying it to a group of feople separarely, we are able to reformulate the process in the following way:

Assume a grouf of perscns in which each individual sticks to a certain but randor time gap T when responding to a suppressive round, and assume that this random varianle T. based on the group is distrikuted with a density $f_{p}(t)$: $T \sim f_{P}(t)$

The subscript P indicates the origin of the density (people). $W \in$ may express τ which is defined as before as follows:

$$
\tau=\left\{\begin{array}{l}
t \text { if no suppressing round } \tag{2.45}\\
\text { arrives in }(0, t) \text { or } t^{\prime}>t \\
\text { where } t \text { is the time of the } \\
\text { first suppressing round. } \\
t^{\prime}+\tau^{\prime} \text { if } t^{\prime} \leq t
\end{array}\right.
$$

Femark, τ^{\prime} has the same distribution as τ. A similar derivation as before leads to the following result.
$E[\tau \mid T=t]=t \int_{t}^{\infty} \lambda_{s} e^{-\lambda s t^{\prime}} d t^{\prime}+\int_{0}^{t}\left[t^{\prime}+E[\tau \mid T=t]\right] \lambda_{s} e^{-\lambda s^{\prime}} d t^{\prime}$

Recall. the expression $\lambda_{s} e^{-\lambda_{s} t}$ is the density of incoming suppressing rounds.
$E[\tau \mid T=t]=t e^{-\lambda s} s^{t}+\int_{0}^{t} t^{\prime} \lambda s^{-\lambda} e^{t^{\prime}} d t^{\prime}+E[\tau \mid T=t]\left(1-e^{-\lambda} s^{t}\right)$
$E[\tau . \mid T=t]=\frac{1}{\lambda_{s}}-\frac{1}{\lambda_{s}} e^{-\lambda s t}+E[\tau \mid T=t]\left(1-e^{-\lambda} s t\right)$

Solving for $E[\tau \mid T=t]$, we find:
$E[\tau \mid T=t]=\frac{1}{\lambda_{s}}\left(e^{\lambda_{s} t}-1\right)$
cr replacing λ_{s} again fy $\quad \lambda_{s}=\lambda_{f} \cdot P(s)$

$$
\begin{equation*}
E[\tau \mid T=t]=\frac{1}{\lambda_{f} P(S)}\left(e^{\lambda_{f} P(S) t}-1\right) \tag{2.49}
\end{equation*}
$$

So far this value represents the expected duration spent in the "down state" given a particular time gap tor a certain individual. Clearly the conditional expectation has the same form as the unconditional expectation $E[\tau]$ (see formula (2.43)) for a fixed time gap T.

Renoving the condition in equation (2.49) w find the expected duration time of suppression based on the considered pcpulation.

$$
\begin{equation*}
E[\tau]=\int_{0}^{\infty} E[\tau \mid T=t] \cdot f_{P}(t) d t \tag{2.50}
\end{equation*}
$$

$$
\begin{equation*}
E[\tau]=\int_{0}^{\infty} \frac{1}{\lambda_{f} P(S)}\left(e^{\lambda_{f} P(S) t}-1\right) \cdot f_{P}(t) d t \tag{2.51}
\end{equation*}
$$

$$
\begin{equation*}
E[\tau]=\frac{1}{\lambda_{f} P(S)} \int_{0}^{\infty} e^{\lambda_{f} P(S) t} f_{p}(t) d t-\frac{1}{\lambda_{f} P(S)} \tag{2.52}
\end{equation*}
$$

For an evaluarion of this expectation, the density $f_{p}(t)$ has to $b \in$ known.

A further variation of this process leads to the second afproach. Here the time gap T for a certain individual varies randomly according to a particular distribution. This approach is limited to one individual. and will not $t \in$ extended to a group.

Suppose an individual reacts with a random time gap t_{i}

$$
T=t_{i} \quad i=1,2,3, \ldots
$$

cn any incoming suppressing round i, and assume that this random variarle T is distributed with

$$
\begin{equation*}
\mathrm{T} \sim \mathrm{f}_{\mathrm{T}}(\mathrm{t}) \tag{2.53}
\end{equation*}
$$

The subscrift T indicates the origin $c f$ the density (time). The duration τ is deiined as in formula (2.45) before. The conditional $\subseteq x p e c t a t i o n ~ c a n ~ b e ~ w r i t t e n ~ a s: ~$

$$
\begin{equation*}
E\left[\tau \mid T_{1}=t\right]=t e^{-\lambda} s^{t}+\int_{0}^{t}\left(t^{\prime}+E[\tau]\right) \lambda_{s} e^{-\lambda s^{\prime}} d t^{\prime} \tag{2.54}
\end{equation*}
$$

Ihis time τ is conditioned on the individual's iirst chosen time gaf 1.

$$
\begin{equation*}
E\left[\tau \mid T_{1}=t\right]=\frac{1}{\lambda_{s}}\left(1-e^{-\lambda} s^{t}\right)+E[\tau]\left(1-e^{-\lambda} s^{t}\right) \tag{2.55}
\end{equation*}
$$

Kemoving the condition in equation (2.55) we can express the expected duration time of suppression based on the individual's time gap distributicn.

$$
\begin{align*}
& E[\tau]=\int_{0}^{\infty} E\left[\tau \mid T_{1}=t\right] \cdot f_{T}(t) d t \tag{2.56}\\
& E[\tau]=\int_{0}^{\infty}\left[\frac{1}{\lambda_{S}}\left(1-e^{-\lambda} s^{t}\right)+E[\tau]\left(1-e^{-\lambda} s^{t}\right)\right] f_{T}(t) d t \tag{2.57}
\end{align*}
$$

(2)

Solving for the expected value $E[\tau]$ and inserting

$$
\begin{equation*}
\lambda_{s}=\lambda_{f} \cdot P(S) \tag{2.36}
\end{equation*}
$$

we find:

$$
\begin{equation*}
E[\tau]=\frac{\int_{0}^{\infty}\left(1-e^{-\lambda_{f} P(S) t}\right) f_{T}(t) d t}{\lambda_{f} P(S)\left[1-\int_{0}^{\infty}\left(1-e^{-\lambda} f^{P(S) t}\right) f_{T}(t) d t\right]} \tag{2.58}
\end{equation*}
$$

or expressirg in Laplace transform with s as an argument:

$$
\begin{equation*}
E[\tau]=\frac{1}{\lambda_{f} P(S)}\left[\frac{1}{\hat{f}(s)}-1\right] \tag{2.59}
\end{equation*}
$$

A further evaluation of this value reguizes the distrirution $f_{T}(t)$ of T.
ccmparing rotb expectations,
Expected duration time of suppressicn based cn the ccpulation

$$
\begin{equation*}
E[\tau]=\frac{1}{\lambda_{f} P(S)}\left[\int_{0}^{\infty} e^{\lambda_{f} P(S) t} f_{P}(t) d t-1\right] \tag{2.52}
\end{equation*}
$$

and expected duration time of suppression based on the individual's time gaf distriouticn

$$
\begin{equation*}
E[\tau]=\frac{1}{\lambda_{f} P(S)}\left[\frac{1}{\hat{f}(s)}-1\right] \tag{2.59}
\end{equation*}
$$

保
he observe that they are different. However if we suffose that both $d i s t r i b u t i o n \leq f(t)$ and $f(t)$ are concentrat $\in d$ at $T=z$ (delta function) it is possible to reduce koth expressions to the very first derivation (2.48) where the the time gap I was fix d_{d}.

The reciprocals of these expectations approxixate the rate at which the foxhole occupant (e. g. member of a group of antitank gunners returns from the suppressed state into the unsupfressed state) returns back to continue bis mission.

$$
\begin{equation*}
\lambda_{u}=\frac{1}{E[\tau]} \tag{2.60}
\end{equation*}
$$

where $E[\tau]$ represents any of the derived exfectations. In summary the three rate coefficients develcped are:

$$
\begin{align*}
& \lambda_{k}=\lambda_{f} \cdot P(K) \tag{2.38}\\
& \lambda_{s}=\lambda_{f} \cdot P_{k}^{\prime}(S) \tag{2.37}\\
& \lambda_{u}=\frac{1}{E[\tau]} \tag{2.60}
\end{align*}
$$

If killing $a s$ an additional event is considefed, the rate of rise is computed with the same formula (2.60) except that this time $P_{x}(S)$ is used instead of $P(S)$.
C. SUPPEESSICN MODEL

The model which will be $d \in v e l o p e d$ in this section can be set schematically in the following framework:

Figure 8 - Schemaric representation of the situation to be mCDELED

This analysis is restricted to the effects cn the anti-tank gunners... in this case the X-forces. It is behavicr of members of $t h \in X$-force that was wodeled previcisly.

The approach to foraulate the situation of the arti-tank gunners is done by using the ideas of lanchester-type eguations and their further development [Tayler, 1978, p.20].

The differential equations representing the model are all deterministic in the sense that each of them will always yield the same output for a given set of input data. Even though combat between ailitary forces is a complex random process. These equations shed light on combat dynamics and may be useful in defense planning studies.

The rasic idea is that artillery forces use "area"-fire tc supfress or eliminate forces like anti-tank gunners. "Area" in this context means the fact that
the artillery unit "knoas" the area in which to shoot, but does not know the location of each anti-tank gunner,
the anti-tank gunners are "invisible" to the artillery unit.

If $w \in$ further assume hcmogen \in ous forces or X, it is fossible to set up differential equations which model the rate of change of the X -forces:

$$
\begin{align*}
& \frac{d X_{a}(t)}{d t}=-\lambda_{s} X_{a}(t)-\lambda_{k} X_{a}(t)+\lambda_{u} X_{s}(t) \tag{2.61}\\
& \frac{d X_{s}(t)}{d t}=\lambda_{s} X_{a}(t)-\lambda_{u} X_{s}(t) \tag{2.62}
\end{align*}
$$

जemark: clearly λ_{s} here is taken from the 4 -event-model. The
variables $X_{a}(t)$ and $X_{s}(t)$ are respectively the number of the x-forces which are either active in the foxhole (able to use guns and anti-tank-weafons), $X_{a}(t)$, or supfressed, $X_{S}(t)$.

In this simplified structure, tine two equations describe the most essential factors of the assumed situation. They are mathematically approximate, because the solution of the tao differertial equations will furnish the number of gunners active on the battlefisld and the number of gunners supppressed at any point in time. The derivation uses the Laplace transformation:

$$
\begin{align*}
& \mathcal{L}\left\{\frac{d X(t)}{d t}\right\}=s x(s)-X(0) \tag{2.63}\\
& \mathcal{L}\{X(t)\}=x(s)
\end{align*}
$$

we perform Lafiace transformaticn upon (2.61) and (2.62)

$$
\begin{align*}
& s x_{a}(s)-x_{a}(0)=-\left(\lambda_{s}+\lambda_{k}\right) x_{a}(s)+\lambda_{u} x_{s}(s) \tag{2.64}\\
& s x_{s}(s)-X_{s}(0)=\lambda_{s} x_{a}(s)-\lambda_{u} x_{s}(s) \tag{2.65}
\end{align*}
$$

Solving these two equations for $X_{a}(t)$ and $X_{s}(t)$ and translating them Dack to $X_{a}(t)$ and $X_{s}(t)$ gives the desired tine dependent quantities:

$$
\begin{align*}
& -X_{a}(0)=-\left(\lambda_{s}+\lambda_{k}+s\right) x_{a}(s)+\lambda_{u} x_{s}(s) \tag{2.66}\\
& -X_{s}(0)=\lambda_{s} x_{a}(s)-\left(\lambda_{u}+s\right) x_{s}(s) \tag{2.67}\\
& -X_{a}(0)\left[\lambda_{u}+s\right]=-\left(\lambda_{s}+\lambda_{K}+s\right)(\lambda+s) x_{a}(s)+\lambda_{u}\left(\lambda_{u}+s\right) x_{s}(s) \\
& -X_{s}(0) \lambda_{u}=\lambda_{s} \lambda_{u} x_{a}(s)-\left(\lambda_{u}+s\right) \lambda_{u} x_{s}(s) \\
& -X_{a}(0)\left(\lambda_{u}+s\right)-X_{s}(0) \lambda_{u}=\lambda_{s} \lambda_{u} x_{a}(s)-\left(\lambda_{s}+\lambda_{k}+s\right)\left(\lambda_{u}+s\right) x_{a}(s)
\end{align*}
$$

$$
x_{a}(s)=\frac{x_{a}(0) \lambda_{u}+x_{s}(0) \lambda_{u}+s X_{a}(0)}{\left(\lambda_{s}+\lambda_{k}+s\right)\left(\lambda_{u}+s\right)-\lambda_{s} \lambda_{u}}
$$

$$
\text { multiplying }(2.66) \text { and }(2.67) \text { anth } \lambda_{s} \text { and }
$$

$$
\left(\lambda_{s}+\lambda_{k}+s\right) \quad \text { respectively we receive: }
$$

$$
\begin{equation*}
x_{s}(s)=\frac{x_{i a}(0) \lambda_{s}+x_{s}(0)\left(\lambda_{s}+\lambda_{k}\right)+s X_{s}(0)}{\left(\lambda_{s}+\lambda_{k}+s\right)\left(\lambda_{u}+s\right)-\lambda_{s} \lambda_{u}} \tag{2.69}
\end{equation*}
$$

Suppose that at $t=0$ the number of active gunners fable to watch and shoot) is equal to X_{0} and the $n u$ uber of gunners being suppressed (down in the foxhole) is equal to 0 ,

$$
\text { for i.e. } t=0
$$

$$
\begin{equation*}
x_{a}(0)=x_{0} \tag{2.70}
\end{equation*}
$$

$$
X_{s}(0)=0
$$

the equations for $X_{a}(s)$ and $X_{s}(s)$ can be rewritten:
$x_{a}(s)=\frac{x_{0} \lambda_{u}}{s^{2}+s\left(\lambda_{s}+\lambda_{k}+\lambda_{u}\right)+\lambda_{k} \lambda_{u}}+\frac{x_{0} s}{s^{2}+s\left(\lambda_{s}+\lambda_{k}+\lambda_{u}\right)+\lambda_{k} \lambda_{u}}$ (2.71)
$x_{s}(s)=\frac{x_{0} \lambda_{s}}{s^{2}+s\left(\lambda_{s}+\lambda_{k}+\lambda_{u}\right)+\lambda_{k} \lambda_{u}}$

Using the Laflace correspondence:
$\mathcal{L}\left\{\frac{e^{a t}-e^{b t}}{a-b}\right\}=\frac{1}{s^{2}+(-a-b) s+a b}$ for $a \neq b$
$\mathscr{L}\left\{\frac{a e^{a t}-b e^{b t}}{a-b}\right\}=\frac{s}{s^{2}+(-a-b) s+a b}$
for $a \neq b$
(2)
where $\quad a \cdot b=\lambda_{k} \lambda_{u}$.
and $-a-b=\lambda_{s}+\lambda_{k}+\lambda_{u}$
hence $\quad a=\frac{1}{2}\left[-\left(\lambda_{s}+\lambda_{k}+\lambda_{u}\right)\right]+\sqrt{\left(\lambda_{s}+\lambda_{k}+\lambda_{u}\right)^{2}-4 \lambda_{k} \lambda_{u}}$
and

$$
\begin{equation*}
b=\frac{1}{2}\left[-\left(\lambda_{s}+\lambda_{k}+\lambda_{u}\right)\right]-\sqrt{\left(\lambda_{s}+\lambda_{k}+\lambda_{u}\right)^{2}-4 \lambda_{k} \lambda_{u}} \tag{2.75}
\end{equation*}
$$

The equation for $X_{a}(t)$ and $X_{S}(t)$ then are:

$$
\begin{align*}
& X_{a}(t)=\frac{X_{0}}{a-b}\left[\left(\lambda_{u}+a\right) e^{a t}-\left(\lambda_{u}+b\right) e^{b t}\right] \tag{2.76}\\
& X_{s}(t)=\frac{X_{0}}{a-b} \lambda_{s}\left[e^{a t}-e^{b t}\right] \tag{2.77}
\end{align*}
$$

Since λ_{s}, λ_{k} and λ_{u} have to be always greater or €qual to 2ero

$$
\begin{align*}
& \lambda_{s} \geq 0 \\
& \lambda_{k} \geq 0 \tag{2.78}
\end{align*}
$$

$$
\lambda_{\mathrm{u}} \geq 0
$$

The constants a and b are always negative and real numbers.

$$
\begin{align*}
& a \leq 0 \\
& b \leq 0 \tag{2.79}
\end{align*}
$$

This leads $\div 0$ the basic shape of the functicn

$$
\begin{align*}
& X_{a}(t)=f(t) \tag{2.80}\\
& X_{s}(t)=f(t)
\end{align*}
$$

shown in the following figure.

Figure 9 - FUNCTIONS $X_{a}(t)$ AND $X_{g}(t)$

In discussing the functions $X_{a}(t)$ and $X_{s}(t)$ the following properties can $b \in$ seen.
for $t=0$

$$
\begin{align*}
& x_{a}(0)=\frac{x_{0}}{a-b}\left[\left(\lambda_{u}+a\right) e^{a \cdot 0}-\left(\lambda_{u}+b\right) e^{b \cdot 0}\right]=x_{0} \tag{2.81}\\
& X_{s}(0)=\frac{x_{0}}{a-b} \lambda_{s}\left[e^{a \cdot 0}-e^{b \cdot 0}\right]=0 \tag{2.82}
\end{align*}
$$

for $t=\infty$

$$
\begin{align*}
& x_{a}(\infty)=\lim _{t \rightarrow \infty} \frac{x_{0}}{a-b}\left[\left(\lambda_{u}+a\right) \cdot e^{a t}-\left(\lambda_{u}+b\right) \cdot e^{b t}\right]=0 \tag{2.83}\\
& x_{s}(\infty)=\lim _{t \rightarrow \infty} \frac{x_{0}}{a-b} \lambda_{s}\left[e^{a t}-e^{b t}\right]=0 \tag{2.84}
\end{align*}
$$

$$
\text { for } \left.t=t_{\max } \text { (i.e.max values for } X_{a}(t) \text { and } X_{s}(t)\right)
$$

$$
\begin{align*}
& X_{a}(t) \text { has no max in }(0, \infty) \text {, i.e. max value is at } t=0 \\
& X_{a}(t)=X_{0} \tag{2.85}
\end{align*}
$$

$X_{s}(t)$ has a max at

$$
\begin{align*}
t_{\max } & =\frac{\ln (a / b)}{b-a} \text { with } \tag{2.86}\\
X_{s}\left(t_{\max }\right) & =\frac{x_{0}}{a-b} \lambda_{s}\left[e^{a t_{\max }}-c^{b t_{\max }}\right]<x_{0}(2.87) \tag{2.87}
\end{align*}
$$

The foregoing model assumed a rate of x llling in additicn to a suppressicn rate and a rising rate. It is possitle to simplify this model by leaving out the thizd rate. It will be shown in chapter III. C., that this rate

$$
\begin{equation*}
\lambda_{k}=\lambda_{E} \cdot P(K) \tag{2.38}
\end{equation*}
$$

for such a scenario may be very small in ccmparison to the other two rates.

For this reason $w \in$ can state that leaving cut the kiliing rate will not drastically oversimplify the aodel, yet it will simplify the computaticnal procedure in obtaining the wanted dependency between time and the number of gunners active or suppressed on the field.

This leads to the following set-up of differential equations:

$$
\begin{equation*}
\frac{d X_{a}(t)}{d t}=-\lambda_{s} X_{a}(t)+\lambda_{u} X_{s}(t) \tag{2.88}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d X_{s}(t)}{d t}=\lambda_{s} X_{a}(t)-\lambda_{u} X_{s}(t) \tag{2.89}
\end{equation*}
$$

Where the total sum of people either suppressed or active on the battlefield is equal to a constant X_{o} (no killing)

$$
\text { i.e. } x_{0}=x_{a}(t)+X_{s}(t)
$$

which enailes us to rewrite the equations:

$$
\begin{equation*}
\frac{d X_{a}(t)}{d t}=-\lambda_{s} X_{a}(t)+\lambda_{u}\left(X_{0}-X_{a}(t)\right) \tag{2.90}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d X_{s}(t)}{d t}=\lambda_{s}\left(X_{0}-X_{s}(t)\right)-\lambda_{u} X_{s}(t) \tag{2.91}
\end{equation*}
$$

Using again Laplace transformation as earlier:

$$
\begin{align*}
& s X_{a}(s)-X_{0}(0)=-\lambda_{s} X_{a}(s)+\frac{\lambda_{a} X_{a}}{s}-\lambda_{a} X_{a}(s) \tag{2.92}\\
& s X_{s}(s)-X_{s}(0)=\frac{\lambda_{s} X_{0}}{s}-\lambda_{s} X(s)-\lambda_{u} X_{s}(s) \tag{2.93}
\end{align*}
$$

$$
\begin{aligned}
& x_{a}(s)=\frac{\lambda_{u} x_{0}}{s\left[s+\left(\lambda_{s}+\lambda_{u}\right)\right]}+\frac{x_{a}(0)}{s+\left(\lambda_{s}+\lambda_{u}\right)} \\
& x_{s}(s)=\frac{\lambda_{s} x_{0}}{s\left[s+\left(\lambda_{s}+\lambda_{u}\right)\right]}+\frac{x_{a}(0)}{s+\left(\lambda_{s}+\lambda_{u}\right)}
\end{aligned}
$$

using the Laflace transform:

$$
\begin{align*}
& \mathcal{L}\left\{\frac{1}{a}\left(1-e^{-a t}\right)\right\}=\frac{1}{s(s+a)} \\
& \mathcal{L}\left\{e^{-a t}\right\}=\frac{1}{s+a} \tag{2.94}
\end{align*}
$$

for both equations we find $X_{a}(t)$ and $X_{s}(t)$ fcf tae simplified model.

The rate λ_{s} bas to be derived this time fram the frobability cf suppression $P(S)$ without killiag included as a possible event. We recall;

$$
\begin{equation*}
P(S)=\frac{K}{2 \pi \sigma^{2} \sqrt{1+\frac{K}{2 \sigma^{2}}-\varepsilon^{2}}}, \text { (2.19) } \lambda_{S}=\lambda_{f} \cdot P(S) \tag{2.36}
\end{equation*}
$$

Hence
$X_{a}(t)=\lambda_{u} X_{0} \frac{1}{\lambda_{s}+\lambda_{u}}\left(1-\exp \left[-\left(\lambda_{s}+\lambda_{u}\right) t\right]\right)+X_{a}(0) \exp \left[-\left(\lambda_{s}+\lambda_{u}\right) t\right]$
$X_{s}(t)=\lambda_{s} x_{0} \frac{1}{\lambda_{s}+\lambda_{u}}\left(1-\exp \left[-\left(\lambda_{s}+\lambda_{u}\right) t\right]\right)+X_{s}(0) \exp \left[-\left(\lambda_{s}+\lambda_{u}\right) t\right]$
for $t=0 \quad X_{a}(0)=X_{0}, \quad X_{s}(0)=0$
The equaticn for $X_{a}(t)$ and $X_{s}(t)$ then are:

$$
x_{a}(t)=\frac{x_{0}}{\lambda_{s}+\lambda_{u}}\left[\lambda_{u}+\lambda_{s} \cdot \exp \left[-\left(\lambda_{s}+\lambda_{u}\right) t\right]\right]
$$

$$
\begin{equation*}
x_{s}(t)=x_{0} \frac{\lambda_{s}}{\lambda_{s}+\lambda_{u}}\left(1-\exp \left[-\left(\lambda_{s}+\lambda_{u}\right) t\right]\right) \tag{2.99}
\end{equation*}
$$

remark: For $t \rightarrow \infty \quad$ the sum of both assymptotic values of $\underset{a}{ }(t)$ and $X_{s}(t)$ is equal to X_{0}

The basic shape of these two functions $X_{a}(t)$ and $X_{s}(t)$ can be seen in the following Fig 10.

If we compare this result to the result on figure 9 we can see that the addition of killing to the model has an influence on the shape of the functions. So is e. g. the value for $X_{a}(t)$ and $X_{s}(t)$ in the first model (figure 9) for large times approximately zero, while in this case here (figure 10), the total number of people on the field ($X_{a}(t)+$ $\left.x_{s}(t)\right)$ is always constant, i. ϵ. both functions approaches to a limit value not equal to zero.

Figure 10 - FUNCTIONS $X_{a}(t)$ AND $X_{s}(t)$

A. EXPERIMENTAL DESIGN

1. GEneral Aspects

The mathematical model developed in the chapter before shall now be supported by an experiment which was conducted by the US army Combat Developments Experimentation Command (CDEC), ECrt Ord, California.

The experiment descrited here belongs to a series of similar experiments, all dealing with the objective of collecting and analyzing data of the suffression process. The data of this particular part of the CDEC Experiment were based on therelationship betwoen suppressicn and distance. Ihis analysis tries to make use of the data by analyzing the \quad Elationshif among suppression, distance, and angle. In a further experiment conducted ky CDEC, the objective was also to include the angle as an additional variable for the suffressicn effect.

2. SEtup Agㅡ Realisation

The data were taken from a fart of the experiment which was extcuted at Fort Hunter Liggett, California.

Four foxhole-bunkers were constructed which guaranteed the safety of treflayers as well as reproduced the real scenario as close as possible. Their tops were below ground level, and covered with several layers of wire mesh and steel plates. This provided overtead protection from fragmentation. Each bunker was equifped with a mirror system which allowed the player to view events in front of
1
his position.
A pop-up silhouette was installed fcrward of each Flayer position. The player was able tc control the silhouette as well as the cover of the mirror system, i.e. When the cover was opened (allowing the player to view down-range), the silhouette was in exposed posture. He was asked to respond as if he would be in the fosition of the Fop-up silnovette.

Each bunker was connected to controll bunkers by communication and instrumentation wires and power bunkers for data recording and supply. In the forefiold of the bunkers, different types of projectiles or equivalent charges (81 ma, 105 mm and 155 ma among others) were placed and randomly detonated one at a time with the time between detcnations randomly selected from three fossibilities of t€n, fifteen, and twenty seconds. The figure on the next Fage shows the schematic setup of the rounds, the location of the bunkers and the angle of sight for each foxhole. It can $b \in$ seen that the explosions were visible to some players but not to otbers. Since each type of ammunition has a different lethal radius, it was necessary to have different range configurations for each type. The aspect angle and the miss distances frow the foxholes to the different foints of detonation are sumarized in appendix a for each anaunition sefarately. Since all of the projectiles used in this part of the experiment were statically detonated, it was not possible to model the kinetic contribution to the terminai effects. In order to keep the fragmentation pattern as close as possible to those of incoming rounds, the projectiles were supported with sandiags [suppex,p.A-12].
电

FIgure 11 - $\begin{gathered}\text { SCHPMATIC RANGE FOR } 81 / 105 / 155 \mathrm{~mm} \\ \text { SUPPRESSION EXPERIMENT (SUPPEX II) } \\ \text { CDEC }\end{gathered}$
电

The flayers were divided into tyo four-man teans. for each trial, memers of one team occufied individual foxholes and provided the performance data for that trial. The mission of the players was to track moving target tanks by operating the periscopes. This mission was interrupted by the playzis responses to detonations in case he was suppressed (change of his state to "down"). The state change and the pericd of suppression $w \in r e$ automatically recorded.

3. Fresentaticn of The Lata

Appendix A summarizes the data which are the basis for the succeeding data analysis and serve tc evaluate the parameters and rates for the model.
E. DATA ANALYSIS

1. Parameters of The Model

The data presented in the section above are separated into three different sets:

Set cne consists of data related to the conditional frequency of suppression $\hat{p}(S / \theta, r)$ and the time of suppression when rounds of caliber 81 ma were fired. Specifically, if n trials were made under conditions $(5, \theta)$, the number $s_{i} c f$ suppression was tabulated. Then s_{i} / n is an estimate of $P\left(S / r_{i}, \theta_{i}\right)$.

Sets two and three provide the same data except that they are related to 105 mma rounds and 155 mm rcunds.

The main part of this analysis is to make use of the data in crder to estimate the parameters of the model described in

chapter II, and to see how well the real world situation can te described by the model developed earlier.

The model is fitted (numerical values of the parameters are determined) by the method of least squares. [De Groot, p.527-538]. With the basic model being of the form:

$$
\begin{equation*}
Y_{i}=B_{1} u_{i}+B_{2} v_{i}+E r r_{i} \tag{3.1}
\end{equation*}
$$

And the data are analyzed on the following two different assumpticns; the second is certainly the most realistic:

Homoscedasticity of the data, i. e. the error variance of Err is assumed to be ccnstant.

Heteroscedasticity of the data, i.e. we will assume that eaci error tera Err is distributed with variance σ^{2}, where the variance is not constant over observations. Errors are also assumed tc be indepencent. If convenient, error terms will be assurea to be approximately normally distributed.

These assumptions imply different $r \in g r e s s i o n$ methods. For the first assuafticn, the result of unweighted single step and iterative regression methods will be presented. On the assumpticn cf heteroscedasticity, two special iterative methods will be used. When we allcw for heteroscedasticity, ordinary least-squares estimation flaces the same weight on the observations which bave small error variances as on those with large error variances. By applying a weighting regression, it is possible to adjust for the heteroscedasticity. So the two anncunced methods for the second assumption are iteratively weighted least squares regression $m \in t h o d s$.

In order to prepare the formula of the model for the regression, we apply a log-transformation to the equation (2.1) in chapter II B.1. This is a convenience, for it transforms the problem to one of linear fitting. we obtain the following result:

$$
\begin{equation*}
P(S / \theta, r)=\exp \left[-\frac{1}{K} r^{2}(1-\varepsilon \cos \theta)\right] \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\ln P(S / \theta, r)=-\frac{1}{K} r^{2}+\frac{\varepsilon}{K} r^{2} \cos \theta \tag{3.2}
\end{equation*}
$$

Using the notation

$$
\begin{align*}
& y=\ln P(\Omega / \theta, r) \\
& u=I^{2} \tag{3.3}\\
& v=r^{2} \cdot \cos \theta
\end{align*}
$$

the equation can be applied to each datapoint i and the equation can $\dot{\text { e }}$ rewritten as:

$$
\begin{equation*}
y_{i}=-\frac{1}{K} \mu_{i}+\frac{\varepsilon}{K} v_{i} \tag{3.4}
\end{equation*}
$$

The model car then de expressed as follows:

$$
\begin{equation*}
Y_{i}=\beta_{1} u_{i}+\beta_{2} v_{i}+E r r_{i} \tag{3.1}
\end{equation*}
$$

where the unkncwn parameters are: $\quad \beta_{1}=-\frac{1}{K} \quad \beta_{2}=\frac{\varepsilon}{K}$
and the randc⿴囗⿰丿㇄心

$$
\begin{equation*}
Y_{i}=\ln \hat{P}\left(S / \theta_{i}, r_{i}\right) \tag{3.6}
\end{equation*}
$$

The＂hat＂on the letter p represents an estimate of the frobability of suppression at (r, θ) ．The fitted regression plane for this function has the form：
$\hat{y}=\hat{\beta}_{1} u+\hat{\beta}_{2} v$

The log－transfcrmation of the conditional frequency cf suppression $\hat{p}(S / \theta, r)$ causes difficulties because of experimental results，which lead to an obserped frequency of zero suffression．Ihis fact influミnces the estimate $\hat{p}(S / \theta, r)$ ，that is used．

Having specified the modəl it is possible to apply the follcwing different regression methods cn the assumption of homoscedasticity：

In other words，supeose n_{i} observations were made ar experimental conditions（ I_{i}, θ_{i} ）and of these s_{i} were successes． Then first consider the estimate

$$
\begin{equation*}
Y_{i}=\ln \hat{P}\left(S / r_{i}, \theta_{i}\right)=\ln \left(s_{i} / n_{i}\right) \tag{3.8}
\end{equation*}
$$

where s_{i} is the number of superessions，and n_{i} is the number of exposures to suppression，under condition i．

Consequently，the transformed response to conditions（ I_{i}, θ_{i} ） way be $\ln \left(\theta / n_{i}\right)=-\infty \quad$ formally，causing embarassment．He will subsequently suggest alternative ways of dealing with this problem．

Method 1: (zeェo-probakilities are omitted)

With this method , the datapoints which had a frequency of suppression $P(S / r, f)=s_{i} / n_{i}=0$ are deleted. Consequently the following data points of the original sample of appendix. A as shown in figure Fig 12 were nct considered.

Caliber	No.	$\mathrm{P}(\mathrm{S} / 0, \mathrm{r})$	θ	r
81 mm	29	0	41	117
	30	0	36	127
	31	0	60.5	95
	32	0	46	108
	34	0	60.5	95
	35	0	46	108
	36	0	36	127
105 mm	15	0	17	104
	19	0	36	158
	23	0	46	135
	24	0	46	135
	28	0	56	108
	29	0	56	108
	31	0	71	97
155 mm	3	0	0	200
	15	0	14	209
	17	0	23	125
	18	0	14	209

Figure 12 - DELETED DATA EOINTS

Method 2 and 3 (Clustering of data points)

One or more zero data points i, i.e. $\hat{P}(S / \theta, r)=0$ $i=1,2, \ldots . a$ will be clustered with one other data pcint j which has a nonzero conditicnal frequency of suppression, i.e. $\hat{P}(S / \theta, I) \neq 0$ and which possesses the closest distance r_{j} and angle θ_{j} to the zerc data fcint(s).

Ey clustering $(m+1)$ data points together and taking the $\mathbb{m} \in \mathrm{an}^{\prime}$ of the frequencies, θ and r within each cluster, we are aicle tc replace the data points of the cluster sets. This procedure is inevitably scmewhat aroitrary.

$$
\begin{array}{rlrl}
\hat{P}(S / \theta, r) & =\frac{1}{m+1} \sum_{i=1}^{m+1} \hat{P}_{i}(S / \theta, r) & \\
\bar{\theta} & =\frac{1}{m+1} \sum_{i=1}^{m+1} \theta_{i} \quad \bar{r}=\frac{1}{m+1} \sum_{i=1}^{m+1} r_{i} \tag{3.9}
\end{array}
$$

The bars above the symbols represent the cluster average. With these averages two different replacement procedures can be applied:

Each cluster will be replaced by its cluster average. This reduces the data sample.

Each cluster point will be replaced by its cluster average. Consequently the number of data foints stays unchanged.

Figure 13 lists the reglaced data points of the samples of appendix a.

Figure 13 - changed data points

This method is analogous to one suggested by D. R. Ccx [Cox, p.33]. The derivation for the variable Y_{1} shown on these pages can be applied correspondingly in the following manner:
$\underset{\sim}{\sim_{i}}=2 n\left(\frac{S_{i}+a}{n_{i}}\right)$

Where the random number S_{i} is the number of supfressions (successes, given n_{i} trials).

The constant a, which represents an untiasing adjustment, is derived En appendix E. It is taken to上e:
$a=\frac{1}{2}(1-\hat{P}(S / \theta, r))$.

This is suggested ky an auxiliary analysis similar to that of cox.

Hence the transforaation results in the formula:
$\underset{\sim}{Y_{i}}=\ln \left(\frac{S_{i}+\frac{1}{2}\left(1-\hat{P}_{i}(S / \theta, r)\right)}{n_{i}}\right)$

This formula enables one to include data points that involve zero observed freyuencies cf suppression; the embarassment of taking the logarithm of zero is no longer present.

Method 5 (unneighted iterative regression)

As an extention of the method discussed last, this ath hod replaces the value of $\hat{p}(S / \theta, r)$ in the formula
${\underset{\sim}{Y}}^{\prime}=\left(\frac{S_{i}+\frac{1}{2}\left(1-\hat{P}_{i}(S / \theta, r)\right)}{n_{i}}\right)$

After each iteration by an estimate of the probability of suppression $\hat{P}(S / \Theta, r)$, the number of iterations was determined by the appearance of convergence of the parameters K and ε.

The two fcllowing methcds are weigated regressions which are necessitated $k y$ the earlier described netercscedasticity.

Method 6 (weigited iterative regression Var (Err)~ r^{4})

This method is suggested by the fact that the crserved variability in residuals increases with r. [Pindyck, p. 1C0] Since the error variance is not known, it is reasonable to assume the existence of a simple relaticnship between the error variances Var (Errif and the values of one of the explanatory variables in the regression model. In this analysis, the distance frou tiae foxhole to the explosion was chosen as the important explanatory variakle. By using

$\operatorname{Var}\left[\operatorname{Err}_{i}\right] \sim r_{i}^{4}$
the resulting regression furaula is:
$\frac{Y_{i}}{\left(\operatorname{Var}\left[\operatorname{Er} r_{i}\right]\right)^{1 / 2}}=\beta_{1} \frac{u_{i}}{\left(\operatorname{Var}\left[E r r_{i}\right]\right)^{1 / 2}}+\beta_{2} \frac{v_{i}}{\left(\operatorname{Var}\left[\operatorname{Er} r_{i}\right]\right)^{1 / 2}}$

$$
+\frac{\operatorname{Err}_{i}}{\left(\operatorname{Var}\left[\operatorname{Err}_{i}\right]\right)^{1 / 2}}
$$

This equation can $k \in$ reduced to the following regression function:
$y_{i}^{\prime}=\beta_{1}+\beta_{2} v_{i}^{\prime}$
where

$$
\begin{align*}
& Y_{i}^{\prime}=\frac{2 n\left(\frac{S_{i}+\frac{1}{2}\left(1-\hat{P}_{i}(\operatorname{si} \theta, r)\right)}{n_{i}}\right)}{r_{i}^{2}} \\
& v_{i}^{\prime}=\frac{v_{i}}{r_{i}^{2}} \tag{3.17}
\end{align*}
$$

Afterwards, the iteraiion procedure is equivalent to method 5. This method tends to make the variance of the residuals around the fitted line of more nearly constant variance; estimates oi the model parameters should $b \in$ thereby improved.

Method 7 (weighted iterative regression)

Using the error variance derived in appendix C. which has the form;
$\operatorname{Var}\left[\ell n \mathrm{f}_{1}\right]=\frac{1-\hat{p}_{i}(S / \theta, r)}{n_{i} \hat{\mathrm{P}}_{i}(S / \theta, r)}$
where

$$
\begin{equation*}
f_{i}=\frac{S_{1}}{n_{i}} \tag{3.19}
\end{equation*}
$$

the regression formula will be modified as follows:

$$
\begin{equation*}
\frac{y_{i}}{\left(\operatorname{Var}\left[\ln f_{i}\right]\right)^{1 / 2}}=\beta_{1} \frac{u_{i}}{\left(\operatorname{Var}\left[\ell n f_{i}\right]\right)^{1 / 2}}+\beta_{2} \frac{v_{i}}{\left(\operatorname{Var}\left[\ell n f_{i}\right)\right]^{1 / 2}} \tag{3.20}
\end{equation*}
$$

where Y is again:
$y_{i}=\ln \left(\frac{S_{i}+\frac{1}{2}\left(1-\hat{P}_{i}(S / \theta, r)\right)}{n_{i}}\right)$
as derived in wethod 4. The resulting equation has the form:
$\frac{\ln \left(\frac{S_{i}+\frac{1}{2}\left(1-\hat{P}_{i}(S / \theta, r)\right)}{n_{i}}\right)}{\left(\frac{1-\hat{P}_{i}(S / \theta, r)}{n_{i} \cdot \hat{P}_{i}(S / \theta, r)}\right)^{1 / 2}}=\left\{\begin{array}{l}\beta_{1} \frac{u_{i}}{\left(\frac{1-\hat{P}_{i}(S / \theta, r)}{n_{i} \cdot \hat{P}_{i}(S / \theta, r)}\right)^{1 / 2}} \\ +\beta_{2} \frac{v_{i}}{\left(\frac{1-\hat{P}_{i}(S / \theta, r)}{n_{i} \cdot \hat{P}_{i}(S / \theta, r)}\right)^{1 / 2}}+E r r_{i}^{\prime}\end{array} \quad\right.$.

The iterative procedure in this methcd is performed by using the estimate of the conditicnal probatility of suppression as infut for each succeeding iteration. The number of iteraticns was determined as in method 5 and 6 ty the apparent convergence of


```
the estimators of the parameters K and \varepsilon.
```

In order to perform the multiple linear regression, we switch over to matrix notaticn, where we can write the normal equations in $t h \in$ follcwing form:

$$
\begin{equation*}
Z^{T} \cdot Z \cdot \hat{\beta}=Z^{T} \cdot Y \tag{3.22}
\end{equation*}
$$

The matrix Z is the design matrix which consists of vector 0 , the sguare of the distances and V. the froduct of the $\cos \theta$ and the square of the distances. The variables Y and B represent a (sample size 1×1) and a (1×2) vectcr respectively, For the exferiments analyzed, the entries of the design watrix rere cttained by solving the normal equations for $\hat{\beta}$. $W \in$ find:

$$
\begin{equation*}
\hat{\beta}=\left(Z^{T} \cdot Z\right)^{-1} \cdot Z^{T} \cdot Y \tag{3.23}
\end{equation*}
$$

Femark: Capital letters used for matrix notation.

Ihe parameters $\hat{\kappa}$ and $\hat{\varepsilon}$ can be evaluated by using tae equations:

$$
\begin{aligned}
& \hat{K}=-\frac{1}{\hat{\beta}_{1}} \\
& \hat{\varepsilon}=\hat{\beta}_{2} \cdot K
\end{aligned}
$$

As a modification of the suppressicr function (2.1) in chapter II. B. 1 the function (2.4) in the same chapter
was considered.

$$
\begin{equation*}
P(S / 0, r)=L \cdot \exp \left[-\frac{1}{K} r^{2}(1-\varepsilon \cos 0)\right] \tag{2.4}
\end{equation*}
$$

The inclusior of the parameter L allows for the possitility that suffression may not cccur for shots that fall in very close proximity to the foxhole.

Method 8 (siailar to method 4 but using model above)

In this method the regression procedure and the mミthod 4 were appiied to:

$$
\begin{equation*}
Y_{i}=\beta_{1} u_{i}+\beta_{2} v_{i}+\beta_{3}+\operatorname{Err}_{i} \tag{3.25}
\end{equation*}
$$

where

$$
\begin{aligned}
& y_{i}=\ell n\left(\frac{s_{i}+\frac{1}{2}\left(1-\hat{P}_{i}(S / \theta, r)\right)}{n_{i}}\right) \\
& u_{i}=r_{i}^{2} \\
& v_{i}=r_{i}^{2} \cos \theta \\
& \beta_{1}=-\frac{1}{K} \\
& \beta_{2}=\frac{\varepsilon}{K} \\
& \beta_{3}=e^{L}
\end{aligned}
$$

The rormal equations have tae same form as befcre:
$\hat{\beta}=\left(Z^{T} \cdot Z\right)^{-1} \cdot Z^{T} \cdot Y$
but 2, the design matrix consists this time of the vectors U, V, and a column vector consisting only of ones. The resulting $\hat{\beta}$ vector consists now of 3 elements, from which it is possible to evaluate the different farameters K, ε, and L.

The calculation of the parameters for all methods was ferfermed ícr each type of ammunition separately by applying the computer language APL. The projrams uhich where used for this regression are listed in appendix I. The appendixes D through G show the analysis of the residuals after the regressicn of the original data of appendix A.

The analysis for each amanition type was performed according to the same fattern, and includes the following stefs.

For each earlier develcped method (1 tarough 7):
DEtermination cf BETA(1) and BECA(2)
Determination of K
Determination cf ε
Plot of the residuals as a function cf Y as defined in each method earlier. The api function which yas used has the name SCAT and belongs to the library package $0 A 23660$ (available at 2 . R. Church Computer Center).
plot of the residuals of the regression as a single array with the function BOXPLOT or the same libra工y package. The plot characterizes the quartiles, the interquartile distance, the median, data points inside and outside the 1 and 1.5 interquartile distance and outliers [McNeil, p.13 and 71,72].

Numerical values of the residuals.
histograms for the residuals of the regression which show the relative frequency and statistical features.

For method 8, which is an analysis based on different assumptions for the probability cf suppressicn $P(S / \theta, r)$, the same analysis was performed, with the exception'of the histograms fcr residuals.

Th= methods 1-7 describe the attempt, to master the
 well as the problem of a possible heteroscedastisity.

For the later methods, in which aore appropriate statistical tools were used, the systematic structure of the residuals seems to disappear up to a certain point. The zesiduals concentrate themselves more and more symmetrically around their mean and median (compare particular the boxplots and the histograms in the appendixes D, E, F, and G) •

The relative large reaaining range of the residuals is determined by single outliers. The analysis showed Jifferences for different kinds of amqunition. Among the three ammunitions considered, the analysis cf 81 ma showed tne smallest spread for the residuals, for almost all regressicn methods.

The appendix H shows for the iterative regression wethods 5,6, and 7 the develcpaent of K and ε for the different kinds of ammunition. In each method, a convergence of the values K and ε with increasing iteration can be observed. The starting value for K is in method 5 smaller and in method 6 and 7 larger than its corresponding value after convergence is obtained. This is true for all types of ammunition, an equivalent observation can be made for the ε-values.

A graph for the iterating ε for method 5, 155 mm could not ke flotted because of the very small change of the ε-values along each iteration.

The third page of apendix H displays the numerical values for K and ε produced in each method for the three different types of ammunition.

The analysis of the parameters K and ε showed the fcllowing result;

For the iterative methods (5,6,7) the K and ع-values approached wich increasing iteraticna limit value (see page one and two of appendix H) ; this occured after about the sixth iteration. The final values for these aethcas are also presented in the tableau of appendix H (third page). The plcts for K and ε show different shapes fcr different methods and partly also for different types of amouniticas. The approach to the final value may occur from a relative sall or a relative high value. among the three ammuntion types considered, the analysis of 81 ma showed the smallest spread for the residuals, for almost all regrassicn wethcas. The scale parameter K influences the frobadility of suppression $P(S / \theta, r)$ as stat $\in \mathbb{d}$ under formula (2.1) in chapter II.B.1. in the following manner:

An increasing value of K leads to an increase of the frotablility of suppression $E(S / \Theta, 工)$. It is reasonable to assume that the supfressicn effect increases witb the increase of che caliner. This behavior was confirmed by the data analysis; except for method one and three where an inversion could be odserved betwean the K-values for $\varepsilon \in 1$ ma, 105 ma, and 155 mm and for 81 ma and 105 mm respectively.

This distortion results from the fact that in aethod cne all data points with probabilities of suppression equal to zero are disregarded and in method three the cluster frocedure emphasizes the average values ficduced by the clustering. We prefer the latter methods.

Contrary to these observations on the K - values, a general trend for the ε-values can not be related to different methods or different kinds of ammunition. The most reliable value of K and ε seems to be found by method
7. This method considers the different variabilities for different sets of distance and angle.

In the course of this paper, the value of K and ε derived in u ethod 7 are taken as input for developing the rates for the model of secticn II.B.

The third parameter L developed by $a \in t h o d ~ 8$ is valid only up to a frobability of suppression evaluation equal to 1.0. Since for 31 mm and 155 ma L is larger than one, the function for the moćel should be decomposed. This alternative approach to model suppressicn is beyond the scope of this paper and will not be considered further at this point, although it is certainiy a topic worthy of further Iesearch.

As a fossible further step, confidence intervals for K and ε could be developed.

2. Suppression Time

The suppression tine data, which were collected in seconds, represent the time for which an individual remains suppressed as a reacticn of a single round. During this time, the individual was unatle to carry out ais missicn; he is in hiding in an effort to survive. According to the setup of the experiment, it was possible for the suppressee to react to detonations, which he was able tc observe and to hear or to hear only (visual/auditory and auditory ferceptors). This is consistent with the medel design in chapter II.

This analysis is an attempt to compare the suppressicn interval gained from the exferiment with a certain distribution whose parameters are estimates of the data. The GAMMA distribution was selected, $\mathrm{E} \in \mathrm{Ca}$ use the range cf the random variable X, representing the time, is limited kelcw by zero and ky $+\infty$ above.

The data of suppression interval for the calibers 81 m@, 105 ma, and 155 mm are plotted in histcgrams in apfendix J.

The estimates $\hat{\lambda}$ and \hat{r} for the Gamma distribution are derived from the expectation and the variance of the data.

$$
\begin{equation*}
\hat{\lambda}=\frac{E[x]}{\operatorname{Var}[x]}=\frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}}{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad \hat{r}=\hat{\lambda} \cdot E[x]=\frac{\left(\sum_{i=1}^{n} x_{i}^{\prime}\right)^{2}}{n \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{3.27}
\end{equation*}
$$

With these farameters, the Gama density can be computed in the considered range, by the formula:

$$
f(x / \hat{\lambda}, r)= \begin{cases}\frac{\hat{\lambda} \hat{r}}{\hat{\Gamma(\hat{r})}} x^{\hat{r}-1} e^{-\hat{\lambda} x} & 0 \leq x<\infty \tag{3.28}\\ 0 & \text { otherwise }\end{cases}
$$

For compariscn, the related density was computed by

$$
\begin{equation*}
f(x)=\frac{\text { frequency in interval }}{N \cdot \text { interval }} \tag{3.29}
\end{equation*}
$$

within the same rangs, where the frequency in a particular interval and the interval itself is taken from the nistcgrams of appendix J, and the constant N is the sample size of the weasured suppression intervals.

The numerical values for the estimates $\hat{\lambda}$ and \hat{r} and the values for the sample size N, the interval Δx, and the range are disflayed in the fcllowing table.

Caliber	$\hat{\lambda}$	$\hat{\mathrm{r}}$	N	INTERVAL $\Delta \mathrm{x}$	RANGE
81 mm	0.686	2.174	445	0.5	0 to 16.15
105 mm	0.468	1.974	348	0.4	0 to 13.7
155 mm	0.587	2.591	101	0.5	0 to 16.75

The following fig 14 compares the Gamma density (3.28) With the height of the related estimated probability cf the data (3.29). The sketches show that the Gamma density for єach ammuniticn type respectively underestimates the related frequency of the data because of its long tails. In fact, any distribution which meets the requirements above could be taken for a comparison, although the Gamma distribution seems to ke a particularly good choice for the 81 mm caliber ammunition.

PANGR OF \%: 020
RANGE OF Y: 00.35
$81 \mathrm{~mm}: \hat{\lambda}=0.686, \hat{r}=2.174, \hat{N}=445$, interval $=0.5$

$155 \mathrm{~mm}: \hat{\lambda}=0.597, \hat{r}=2.591, \quad \mathrm{~N}=101, \quad$ interval $=0.5$

Figure 14 - COMFARISON GAMMA DISIRIBUTION AND DATA

In crder to intensify the comparison, as a next step the skewness and the kurtosis of the data and of the Gamma distribution with the estimates above will be contrasted.

These characteristics express the symmetry of the distribution about its point of central tendency and the relative concentration of cases at the $c \in n t \in r$ and along the tails of the distribution.

For the derivation of the skewass and the kurtosis for a Gama distributicn, we need the first four moments about the origin:

$$
\begin{equation*}
\mu_{1}=E[x]=\frac{r}{\lambda} \quad \mu_{2}=E\left[x^{2}\right]=\int_{0}^{\infty} x^{2} e^{-\lambda x} \frac{(\lambda x)^{r-1}}{\Gamma(r)} \lambda d x \tag{3.30}
\end{equation*}
$$

By changing the variable of integration

$$
\begin{align*}
z & =\lambda x \tag{3.31}\\
d z & =\lambda d x
\end{align*}
$$

$w \in f i n d$

$$
\begin{align*}
\mu_{2}=E\left[x^{2}\right] & =\int_{0}^{\infty} \frac{z^{2}}{\lambda^{2}} e^{-z} z^{r-1} \frac{1}{\Gamma(r)} \lambda \cdot \frac{1}{\lambda} d z \tag{3.32}\\
& =\frac{\Gamma(r+2)}{\lambda^{2} \Gamma(r)} \int_{0}^{\infty} z^{T+2-1} e^{-z} \frac{1}{\Gamma(r+2)} d z
\end{align*}
$$

but the atove integral is equal to one, hence

$$
\begin{equation*}
\mu_{2}=\frac{1}{\lambda^{2}}(r+1) r \tag{3.33}
\end{equation*}
$$

In a similar fashion, the third and the fourth moment can be derived.

$$
\begin{align*}
& \mu_{3}=\frac{1}{\lambda^{3}}(r+2)(r+1) r \tag{3.34}\\
& \mu_{4}=\frac{1}{\lambda^{4}}(r+3)(r+2)(r+1) r
\end{align*}
$$

Converting these moments to moments about the mean by using binomial expansicn:

$$
\begin{align*}
& \tilde{\mu}_{3}=\mu_{3}-3 \mu_{2} E[x]+2(E[x])^{3} \tag{3.35}\\
& \tilde{\mu}_{4}=\dot{\mu}_{4}-4 \mu_{3} E[x]+6 \mu_{2}(E[x])^{2}-3(E[x])^{4}
\end{align*}
$$

we can compute the skewness and the kurtosis

$$
\begin{equation*}
a_{3}=\frac{\tilde{\mu}_{3}}{\sigma^{3}} \quad \alpha_{4}=\frac{\tilde{\mu}_{4}}{\sigma^{4}} \tag{3.36}
\end{equation*}
$$

FOI a Gamma distribution we get the following formulas.

$$
\begin{aligned}
& \alpha_{3}=\left[\frac{(r+2)(r+1) r}{\lambda^{3}}-3 \frac{(r+1) r}{\lambda^{2}} \cdot \frac{r}{\lambda}+2 \frac{3}{\lambda^{3}}\right] \cdot \frac{1}{\left(r / \lambda^{2}\right)^{3 / 2}} \\
& \alpha_{3}=\frac{2}{\sqrt{r}}
\end{aligned}
$$

and by similar operation:

$$
\begin{equation*}
\alpha_{4}=\frac{3 r+6}{4} \tag{3.37}
\end{equation*}
$$

Using the above estimates for λ and r we get:

$$
\begin{equation*}
\alpha_{3}=\frac{2}{\sqrt{\hat{r}}} \quad \alpha_{4}=\frac{3 \hat{r}+6}{\hat{r}} \tag{3.38}
\end{equation*}
$$

The formulas for the skewness and kurtosis derived from the data itself are:

$$
\begin{align*}
& \hat{\alpha}_{3}=\frac{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{3}}{\left(\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}\right)^{3 / 2}} \\
& \hat{\alpha}_{4}=\frac{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{4}}{\left(\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}} \tag{3.39}
\end{align*}
$$

The resulting numerical values for the skewness and kurtosis derived for the Gamma distribution and from the data are displayed in the following table:
(anenen

	81 mm	105 mm	155 mm	
Skewness GAMMA	α_{3}	1.356	1.423	1.242
Skewness DATA	\hat{a}_{3}	2.156	1.032	2.103
Kurtosis GAMMA	α_{4}	5.759	6.039	5.315
Kurtosis EATA	$\hat{\alpha}_{4}$	8.004	1.309	6.750

In discussing the numerical features we can see that the skewness of the Gammadistribution and of the data itself shows an asymmetric right-skewness (positive values). Although the values differ considerably. So is.e. g. the skewness of the data for 155 mm almost twice as big as the skewness based on the Gamma distribution.

The same can be said for the kurtosis. There is significant difference between their numerical values.

This analysis supports the fact that the Gamma Jistribution can only be a rough fit to the data given, and as already earlier expressed, a fit of another distribution frobably would have been as successful as this one.

C. VERIFICATION OF ThE MODEL

In order to supply general features as input factors for the decision process for military leadershif, the purpose of this paragraph is to compute numerical values for the Erobabilities and rates develofed in chapter II.B.1. and 2.

For the computation of numerical values, it is necessary to make the following reasonable assumptions:

It is assumed that an artillery unit consist of six weapons all either 105 ma or 155 man, or that three 81 ma launchers are combined to a mission unit. Hence the fire rate λ_{f} for such units will be concluded to $b \in[W i e n \in r, f .189,211,213]:$

81 ma unit with 50, 55, and 60 rounds/min
105 an unit with 28,32 , and 36 rounds/min
电

155 man unt with 18,21 , and 24 rounds/min.
The standard deviation σ for the density for artillery hits will be considered to be [FM 6-161-1, p. 53]:

25,30 , and 35 m for 81 mm linit

20,25 , and 30 m for 105 mm unit
30,35 , and 40 m for 155 mm unit.
The numbers are taken from the field manual 6-161-1 and out oí working papers of CDEC. They are rcunded for convenience.

The parameter k of the probability of kill is chcsen completely arbitrarily with 100 for 81 四, 150 for 105 mm, and 200 for 155 mm and has nothing to do with experimentally cbserved valuee for the weafons here in question.

The farameter estimates K and ε are taken from apperdix H (tableau) with the values:

	81 mm	105 mm	155 mm
$\hat{k}=$	1360.498	1991.151	2349.845
$\hat{\varepsilon}=$	0.871	0.769	0.359

Tne followinc figure displays the conditional probability of suppression with the akove estimators for the parameters.

$$
\begin{equation*}
P(S / \theta, r)=\exp \left[-\frac{1}{\hat{K}} r^{2}(1-\hat{\varepsilon} \cos \theta)\right] \tag{3.40}
\end{equation*}
$$

for $\theta=0$ i.e. along the main direction of sight.

$$
\begin{equation*}
P\left(S / \theta=0^{\circ}, r\right)=\exp \left[-\frac{1}{\hat{K}} r^{2}(1-\hat{\varepsilon})\right] \tag{3.41}
\end{equation*}
$$

Figure 15 - FUNCTION $\quad r\left(S / \theta=0^{\circ}, r\right)=\exp \left[-\frac{1}{K} r^{2}(1-\varepsilon)\right]$

For the above selected values of the standard deviation σ. the fire rate $\hat{\lambda}_{f}$, and the parameters $\hat{K}, \hat{\varepsilon}$, and H the values $C i$ the probabilities

$$
\begin{equation*}
\hat{\mathrm{P}}(\mathrm{~S})=\frac{\hat{\mathrm{K}}}{2 \sigma^{2} \sqrt{\left(1+\frac{\hat{\mathrm{K}}}{2 \sigma^{2}}\right)^{2}-\hat{\varepsilon}^{2}}} \tag{3.41}
\end{equation*}
$$

$$
\begin{equation*}
\hat{P}_{\mathrm{K}}(S)=P(\hat{S})-\frac{\hat{\mathrm{K}}}{2 \sigma^{2} \sqrt{\left(1+\frac{\hat{\mathrm{K}}}{2 \sigma^{2}}+\frac{\hat{K}}{\mathrm{H}}\right)^{2}-\hat{\varepsilon}^{2}}} \tag{3.42}
\end{equation*}
$$

$$
\begin{equation*}
\hat{P}(K)=\frac{1}{\sigma^{2} / H+1} \tag{3.43}
\end{equation*}
$$

and rates

$$
\begin{aligned}
& \hat{\lambda}_{S}(\text { with no killing })=\lambda_{f} \hat{P}(S)= \\
& \hat{\lambda}_{S}(\text { with killing })=\lambda_{f} \hat{P}_{K}(S) \\
& \hat{\lambda}_{K}=\lambda_{f} \hat{P}(K)
\end{aligned}
$$

are displayed on the succeeding two figures rumber 16 and 17. Numerical values for the rate of $i s \in \lambda_{u}$ are also computed and displayed in figure 17. Ths collected data (suppression intervals) were not distinguished among individuals as in the course of the foregoing analysis. because of this fact the numerical values fcr λ_{u} are based cn the expectation of duration time with regard to fopulation.

$$
\begin{equation*}
E[\tau]=\frac{1}{\lambda_{f} P(S)}\left[\int_{0}^{\infty} e^{\lambda_{f} P(S) t} f_{P}(t) d t-1\right] \tag{3.45}
\end{equation*}
$$

It wight be worthwhile to evaluate the rate of rise by applying the Gamma distributions for $f_{p}(t)$ which were discussed in chapter III.B.2, and contrast them to the values of λ_{u} gained by the data itself.

Hence solving equation (3.45) by having set

$$
\begin{equation*}
f_{P}(t)=\frac{e^{-\lambda t}}{\Gamma(r)}(\lambda t)^{r-1} \lambda \tag{3.46}
\end{equation*}
$$

we find:

$$
\begin{equation*}
E[\tau]=\frac{1}{\lambda_{f} P(S)}\left[\int_{0}^{\infty} e^{\lambda_{f} P(S) t} \frac{e^{-\lambda t}}{\Gamma(r)}(\lambda t)^{r-1} \lambda d t-1\right] \tag{3.47}
\end{equation*}
$$

if $\quad \lambda>\lambda_{f} P(S)$ and by changing the variable cf integration:

$$
\begin{equation*}
\left(\lambda-\lambda_{f} P(S)\right) t=z \quad\left(\lambda-\lambda_{f} P(S)\right) d t=d z \tag{3.48}
\end{equation*}
$$

we get:

$$
\begin{align*}
& E[\tau]=\frac{\lambda^{r}}{\lambda_{f} P(S)\left[\lambda-\lambda_{f} P(S)\right]^{r}} \underbrace{\int_{0}^{\infty} \frac{e^{-z} z^{r-1}}{\Gamma(r)} d z-\frac{1}{\lambda_{f} P(S)}}_{=1} \\
& E[\tau]=\frac{\lambda^{r}}{\lambda_{f} P(S)\left[\lambda-\lambda_{f} P(S)\right]^{r}}-\frac{1}{\lambda_{f} P(S)}
\end{align*}
$$

Ey using the earlier developed estimators, we receive the mathemarical expression for the rate cf rise based on a Gamma distribution for the suppression interval data.

$$
\begin{equation*}
\hat{\lambda}_{u}=\left[\frac{\hat{\lambda}^{r}}{\lambda_{f} \hat{P}(S)\left[\hat{\lambda}-\lambda_{f} \hat{P}(S)\right]^{\hat{r}}}-\frac{1}{\lambda_{f} P(S)}\right]^{-1} \tag{3.50}
\end{equation*}
$$

aemark: This derivation is only true for $\lambda>\lambda_{f} P(S)$, which means that for applying this formula, the fire rate λ_{f} may not exceed the value:

$$
\begin{equation*}
\lambda_{f} \leq \frac{\lambda}{P(S)} \tag{3.51}
\end{equation*}
$$

Ctherwise the integral (3.47) explodes towards infinite and the resulting rate of rise would de

$$
\begin{equation*}
\lambda_{u}=0 \tag{3.52}
\end{equation*}
$$

which is consistent within the set of assumptions.
Instead of using the Gamma distribution the data themselves were applied in a second stef to calculate an estimate for $E[\tau]$ and λ_{u} based on the number of observations n.

$$
\begin{equation*}
\hat{E}[\tau]=\frac{1}{\lambda_{f} P(S)}\left[\left(\frac{1}{n} \sum_{i=1}^{n} e^{\lambda_{f} P(S) t_{i}}\right)-1\right] \tag{3.53}
\end{equation*}
$$

The approximate value for the rate of rise is then

$$
\begin{equation*}
\hat{\lambda}_{u}=\frac{1}{\hat{E}[\tau]} \tag{3.54}
\end{equation*}
$$

If killing as an additional event is considered, the rate of rise is computed with the same formulas (3.49) and (3.53) Except that this time $P_{K}(S)$ is used instead of $P(S)$. The computation of the values for the formulas (3.50) and (3.54) was performed by APL and FORTRAN respectively. The programs are displayed on appendix K.

PROBABILITIES $P(S), P_{k}(S)$, AND $P(K)$

81 mm			
P	25 m		
$P(S)$	0.573	0.495	35 m
$P_{k}(S)$	0.503	0.446	0.430
$P(K)$	0.137	0.100	0.394

105 mm			
P	20 m	25 m	30 m
$P(S)$	0.731	0.643	0.564
$P_{k}(S)$	0.582	0.542	0.492
$P(K)$	0.272	0.193	0.142

155 m	30 m	35 m	40 m
$P(S)$	0.573	0.497	0.432
$P_{k}(S)$	0.480	0.428	0.378
$P(K)$	0.181	0.140	0.111

Figure 16 - NUMERICAL VALUES FOR $P(S), P_{k}(S)$, NND $P(K)$

		3 0	Ξ	\bigcirc	§ิ	5	$\stackrel{5}{5}$	¢－1	$\underset{ }{2}$
$\begin{aligned} & E \\ & \text { 解 } \end{aligned}$	\bigcirc	§			（1）				
		曆			$\begin{array}{cc}\text { N } & 0 \\ 0 & 0\end{array}$ 000			$$	
		¢				$\begin{aligned} & \text { No } \\ & \underset{\sim 1}{1} 0 \stackrel{0}{0} \end{aligned}$ 00°		$\begin{aligned} & n 0 \\ & =1 \\ & \because 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
	${ }_{4}^{4} \left\lvert\, \begin{aligned} & \text { U } \\ & 0 \\ & 0\end{aligned}\right.$		$\underset{0}{9} \stackrel{\cong}{0}$	$\begin{gathered} n \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \mathfrak{n} \underset{0}{n} \\ & 000 \end{aligned}$	$\stackrel{i n}{m} \underset{0}{0} \dot{0}$	$\begin{aligned} & \text { min } \\ & 0.0 \\ & 0 \end{aligned}$	$\underset{\sim}{m} \dot{\sim}$	$\begin{gathered} \text { m } \\ 0 \sim \\ 0 \\ 0 \\ 0 \end{gathered}$
$\begin{aligned} & \text { 昌 } \\ & \text { in } \\ & 0 \end{aligned}$	\bigcirc	F		$$	근 000	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{lll} 10 & \infty \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
		$\stackrel{\text { ® }}{\sim}$		$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \underset{\sim}{N} \\ & \stackrel{y}{N} \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{ll} \infty & 1 \\ \infty & n \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ \hline \end{array}$	 000	Nㅡㅇ 000	ज 00°	合今 $00{ }^{\circ}$
		－		$\begin{aligned} & \text { io mo } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$$	으고 0 0 0 000	$\begin{array}{lll} & \text { m } & \text { n } \\ 0 & 9 \\ 0 & 8 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ll}\text { N～} \\ \sim & 0 \\ 0 & 0\end{array}$ $00^{\circ} 0$	$\begin{aligned} & \text { no } \\ & 002 \\ & 000 \\ & 000 \\ & 000 \end{aligned}$
	出｜ $\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$		\circ 0 	$\begin{aligned} & 10 \text { no } \\ & 0.0 \\ & 000 \end{aligned}$	$\begin{aligned} & \text { M No } \\ & \sim \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { OMO} \\ & \hdashline 10 \\ & 0 \\ & 0 \end{aligned}$	응 00°	응 00°
E1 － -1	\bigcirc	駖	$\begin{aligned} & n \\ & \% \\ & \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		1 0 0 0 0 0 000	－2 000	$\begin{array}{lll} 6 & 9 & m \\ 0 & 0 \\ \hdashline & 0 \\ 0 & 0 & 0 \end{array}$	「． 000	$\begin{array}{lll} \infty & \infty & 1 \\ z & 0 & n \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$
		$\stackrel{5}{\circ}$		$\begin{array}{ll} \circ & 0 \\ \mathrm{~m} & 0 \\ 0 \\ 0 & 0 \\ \hline \end{array}$		$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\stackrel{\circ}{\circ} 0^{\circ}$	
		$\stackrel{\text { E }}{\sim}$	$$	$\begin{array}{lll} A & 1 \\ -1 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \end{array}$		$\begin{aligned} & \text { and } \\ & \text { By } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & B_{0}^{1} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} 0$		
			$\begin{aligned} & N \\ & \infty \\ & \dot{o} \\ & \dot{0} \\ & 0 \end{aligned}$	\cdots $\dot{O} \dot{0}-$	$\begin{aligned} & \mathrm{M} \\ & \infty \\ & \dot{0} \dot{\circ} \dot{0}-1 \end{aligned}$	ふ N 00.4	$\begin{aligned} & \text { Mo } \\ & \dot{\infty} \\ & \dot{O} \dot{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Wi } \\ & \dot{1} \\ & \dot{0} \dot{0}-1 \end{aligned}$	$\begin{aligned} & \text { M } \\ & \dot{\circ} \dot{\circ} \\ & \dot{O} \dot{\circ}-1 \end{aligned}$

Figure 17 －RATES $R O B$ THE MCEL

Row (4) and (6) and row (5) and (7) of figure 17 display comparable values for the rate of rise. As it was stated earlier, the Gamma distribution underestimates the related frequency of the data and hence the comparable values for the rate of rise λ_{u} in row (4) are larger than the values in Iow (6). The same is true for $I C W$ (5) and (7). They differ in general ty 10 - 12 . If we are willing to live with this fact, the rates of rise evaluated by the fitted Gamma distribution are a good approximation for the values computed by the data.

In order to verify the four Lanchester equations (2.76), (2.77), (2.9E), and (2.99), presented in chafter II.C., it is necessary to specify particular rates given in the figure before. In case of a certain known comfcsition of fire units, specific rates could be developed as inputs fcr the model equaticns.

Ey this, the model equations receive their specific shape and scale, their general behavior remains the same, as can $\mathrm{k} \in$ seen in figure 9 and 10 .

IV. DISCUSSION

Eased on the research effort of this paper it was found that the phencmenon of suppression as defined earlier, is a凹ultidimensicnal prcblem. It is influenced by Esychological, physiological, and environmental variables. There exist many possibilities to model dependencies in general form, however to make quantitative stateaents about suppression the \mathbb{m} odellers have to restrict their efforts to those variables which are observable and measurable. Since the main objective of this paper has been to establish models which are able to express relationships quantitatively, the main thrust has been to fcruulate suppressicn as Eunctions of weapon systems and their dispersions.

For the evaluations of the models, a set of simplifying assumpticns was $n \in c e s s a r y$ in order tc guarantee a wathematıcal transparency. The dependencies developed in this thesis postulate some satisfying results in modelling suppressicn. The models reflect sufficient accuracy of:

The physionomy of the human being and its resulting tehavior with regard to supprassion. Suppression is mainly caused $k y$ visual and auditory ferception.

The influence of the weapon systems i.e. their size and their firing capability are $d \in t \in r m i n i n g ~ f a c t o r s$ for the amount of suppression.

Cf course the detailed results, i. e. the estimation of model parameters, are based on selected weapcn systems and scenarios. Many possibilities exist fcr further work in this area farticularly under the aspect of including extended human factors components in the construction of
8
suppression models.
The authors feel the paper may provide a contribution to future design of wargames and simulations as well as weapon systems. It also supports a more careful analysis of the combat situation.

APPLNDIX A

ORIGINAL DATA 81 mm

APPENDIX A

ORIGINAL DATA 105 mm

[^0]

APPETDLX A

ORIGINAL DATA 155 mm

\#	θ in degree	Range(r) in meter	$P(S / \partial, r)$	\# of Trials	\# or Success
1	0	70	0.93	32	30
2	0	110	0.56	32	18
3	0	200	0	32	0
4	0	70	1	32	32
5	0	110	0.164	32	14
6	0	200	0.19	32	6
7	18	76	0.67	32	21
8	12	114	0.38	32	12
9	7	202	0.38	32	12
10	18	76	0.71	32	23
11	12	114	0.5	32	16
12	7	202	0.25	32	8
13	33	92	0.69	32	22
14	23	125	0.14	32	4
15	14	209	0.	32	0
15	33	92	0.44	32	14
17	23	125	0	32	0
18	14	209	0	32	0
19	43	114	0.57	32	18
20	43	114	0.125	32	4

(20-2

APPEMDIX A

SUPPRESSION IMTGRVALS IN SECONDS

81 nm

 -

 .

APPENDIX B

DERIVATION OF CUNSTAMT A

The constant a can be determined correspondingly to the following derivation:

Modifying equation (3.10) in Cox, The Analysis of Einary Data, p. 33. we can define a transform as:

$$
\begin{equation*}
\hat{y}_{i}=\ln \left(\frac{S_{i}+a}{n_{i}}\right) \tag{1}
\end{equation*}
$$

Starting with the original model

$$
p_{i}=P_{i}(S / \theta, r)=e^{f\left(\theta_{i}, r_{i}\right)}
$$

and using the log-transformation

$$
\begin{equation*}
y_{i}=\ln p_{i} \tag{2}
\end{equation*}
$$

We subtract

$$
\hat{y}_{i}-y_{i}=\ln \left(\frac{S_{i}+a}{n_{i}}\right)-\ln p_{i}
$$

and chocse the constant a such that

$$
\begin{equation*}
E\left[\hat{y}_{i}-y_{i}\right]=0 \tag{3}
\end{equation*}
$$

Since $S \sim$ Einorial $\left(n_{i} p_{i}, n_{i} p_{i}\left(1-p_{i}\right)\right)$
which can be approximated by

$$
S_{i}=n_{i} P(S / \theta, r)+\sqrt{n_{i}} U
$$

where U is a random variable with

$$
E[U]=0
$$

$$
\begin{equation*}
E\left[u^{2}\right]=p_{i}\left(1-p_{i}\right) \tag{3}
\end{equation*}
$$

Inserting S in equation

$$
\begin{aligned}
E\left[\hat{y}_{i}-y_{i}\right] & =E\left[\ln \left(\frac{S_{i}+a}{n_{i}}\right)-\ln p_{i}\right] \\
& =E\left[\ln \frac{n_{i} p_{i}+\sqrt{n_{i}} u+a}{n_{i} p_{i}}\right] \\
& =E\left[\ln \left(1+\left(\frac{U}{\sqrt{n_{i}} p_{i}}+\frac{a}{n_{i} p_{i}}\right)\right)\right]
\end{aligned}
$$

approximating this by Taylor series

$$
\begin{aligned}
= & E\left[\left(\frac{U}{\sqrt{n_{i}} p_{i}}+\frac{a}{n_{i} p_{i}}\right)-\frac{1}{2}\left(\frac{U}{\sqrt{n_{i} p_{i}}}+\frac{a}{n_{i} p_{i}}\right)^{2}\right. \\
& \left.+\frac{1}{3}\left(\frac{U}{\sqrt{n_{i}} p_{i}}+\frac{a}{n_{i} p_{i}}\right)^{3}-\cdots+\right]
\end{aligned}
$$

It is sufficient to consider the first two terms of tne Iaylor expansion since f and a are small in comparison to n.

$$
=E\left[\frac{U}{\sqrt{n_{i}} p_{i}}+\frac{a}{n_{i} p_{i}}-\frac{U^{2}}{2 n_{i} p_{i}}-\frac{U a}{n_{i}^{3 / 2} p_{i}^{2}}-\frac{a^{2}}{2 n_{i}^{2} p_{i}^{2}}\right]
$$

Ihis equation has to be zero according to (3)
Bence
terms cícrder $\frac{1}{\sqrt{n_{i}}}: E[U]=0$
terms of crdsc $\quad \frac{1}{n_{i}}: E\left[\frac{a}{p_{i}}-\frac{U^{2}}{2 p_{i}^{2}}\right]=0$

$$
\begin{aligned}
& a-\frac{1}{2}\left(1-p_{i}\right)=0 \\
& a=\frac{1}{2}\left(1-p_{i}\right)
\end{aligned}
$$

terms of higber order are $n \in g l e c t e d$.

APPENDIX C

DEEIVATION OF VARIANCE

The $k \in i g h t i n g$ factor $\operatorname{Var}(l n f)$ for methcd 7 in chapter III B is computed as fcllows:

Expressirg the conditional probability of suppression $E(S / \theta, r)$ as a quorient of the numper of successes S_{i} and the number of trials n_{i} leads to:
$f_{i}=\frac{S_{i}}{n_{i}}$
Where tine exfectation cf f is:

$$
\begin{aligned}
& E\left[f_{i}\right]=P_{i}(S / \theta, r) \\
& \ln f_{i}=\ln \left(\frac{S_{i}}{n_{i}}\right) \\
& \operatorname{Var}\left[\ln f_{i}\right]=\operatorname{Var}\left[\ln \left(\frac{S_{i}}{n_{i}}\right)\right]
\end{aligned}
$$

Since tíc random number S is binomial with mean

$$
E(S)=n P(S / 0, r)
$$

and variance

$$
\operatorname{Var}(S)=n P(S / 0, r) \cdot(1-P(S / 0, r))
$$

it can be stated as a function of a radom variable u with mean

$$
E(U)=0
$$

and variance

$$
\operatorname{Var}(\mathrm{U})=1
$$

$$
S_{i}=n_{i} \cdot P_{i}(S / \theta, r)+\sqrt{n_{i} P_{i}(S / \theta, r) \cdot\left[1-P_{i}(S / \theta, r)\right]} \cdot u
$$

Inserting this in the equation above:

$$
\operatorname{Var}\left[\ln f_{i}\right]=\operatorname{Var}\left[\ln \frac{n_{i} P_{i}(S / 0, r)+\sqrt{n_{i} P_{i}(S / 0, r)\left[1-P_{i}(S / 0, r)\right]} \cdot v}{n_{i}}\right]
$$

$$
\operatorname{Var}\left[\ell \mathrm{f}_{\mathrm{i}}\right]=\operatorname{Var}\left[\ln \left(\mathrm{P}_{\mathrm{i}}(\mathrm{~s} / \theta, r) \cdot\left(1+\sqrt{\frac{\left[1-P_{i}(S / \theta, r)\right]}{n_{i} P_{i}(S / \theta, r)}} \cdot v\right)\right)\right]
$$

$$
\operatorname{Var}\left[\ln \mathrm{f}_{\mathrm{i}}\right]=\operatorname{Var}\left[\ln P_{i}(S / \theta, r)+\ln \left(1+\frac{\left[1-P_{i}(S / \theta, r)\right]}{n_{i} P_{i}(S / \theta, r)} \cdot U\right)\right]
$$

Since $P(S / \theta, I)$ is constant we know that

$$
\operatorname{Var}(\ell n P(S / \theta, r))=0
$$

which leads to:

$$
\operatorname{Var}\left[\ln f_{i}\right]=\operatorname{Var}\left[\ln \left(1+\sqrt{\frac{1-P_{i}(S / \theta, r)}{n_{i} P_{i}(S / \theta, r)}} \cdot v\right)\right]
$$

knowing that for small x's

$$
\ln (1+x) \sim x \text { for } x \ll
$$

we can state

$$
\operatorname{Var}\left[\ell n f_{i}\right] \approx \operatorname{Var}\left[\sqrt{\frac{1-P_{i}(S / \theta, r)}{n_{i} P_{i}(S / \theta, r)}} \cdot U\right]
$$

APPENDIX D

ANALYSIS OF RESIDUALS 81 m

Hethod 1

egras

-.75149305?

- sorplot ifile
- 0

0.1775134611	-0.7037360979
0.07756 .195129	-0.9273n31315
0.00935483	-0.5736432766
0.1225134619	-.1JC2:357R4
0.71913 20:31	0.7877211385
0.7315374685	0.211873729
0.0501 jacsiza	0.1945310213
0.1187 90163	0.7357210564
0.7816 .405 78	0.1536651295
0.1511406003	-0.647752846
0.4817845 St	-1.720110907
0.3774769177	-1.131895010
-0.1983757208	0.8733137133
-0.060 0-278370	0.3 ¢7saseses
-0.3131311129	

Hethod 3

```
    PrGAPS
    ARTA
```



```
    \(r\)
2474.91141
    PRS
0.0373211550
HATR SCAT \(A\)
RAMPI OF \(1: 2.30\)
RA,IGR OF \(11{ }^{-1.7} 1.3\)
```


sorplot 4[1])
*1."

- Mrginualsj

Hothod 2

```
    frit
\(0.000992133400 \quad 0.00038464361\)
2315.72)9
    EPS
0.7100711418
MAFGF तf \(1_{1}\) :3.t
RABGE OF It -1.5 1.1
```



```
1.0 Anspor ilis
```



```
            \(\begin{array}{ll}0.531275067 & 0.534501278 \\ 0.110727605 & 0.1702130371\end{array}\)
            \(\begin{array}{ll}0.116720606 & 0.1702310871 \\ 0.24 e 150711 & 1.009909432\end{array}\)
```



```
            \(0.0528-10167 \quad-0.85753171\)
            \(0 . c-78 j c 66197 \quad\) - 0.6712654036
            \(0.2115214135 \quad-0.0975163146\)
            \(0.16: 7101779-0.2517617551\)
            0.6951065546
```



```
            \(-0.3232001835\)
```

Method 4

negriess heta	
0.0006281647731	0.0005116238212
1591.93日204	
EPS	
0.518391830	

SGAF 4

> 0.1317016716
0.1007911318

0.131707679	0.1007311317
1.10704730	U.0313714193
$0.901-201103$	0.61.561218
0. 1:714)*?	0.1907011117
-0.0)'901751.	0.710 .101675
0.01167131 111	0.570913738
$0.10 \cdot 911700$	$0.03010: 16038$
-1.01671101	$0.29113: 711$
-0.59101213s	0.135081097
2.790.antis	0.7161 -til
-0.403630.nht	0.3111717678
*0.79411**	0 0, incerstis
-0.97001010*	$\cdots 0.9417900711$
*0.97) ${ }^{\text {a }}$	
1.0310.701	-0.271904917
*.140010109	-0.)7-j14.761
-0.17011031	-0.17n-11701
*.70s31tas	

APPENDIX D

ANALYSIS OF THE RESIDUALS 81 mm

Method 6 Ist Iteration

ITER BEPIT

0.0005869243530 .0004745912294

K
1703.797002
$0.8005073: 2$
PARGR OP $x:-3{ }^{0}$
RAMGE OP $7:-1.52$

Method 7 Ist Iteration
CTER
nFPTP
0.00063343089210 .0006014240416

1429．733618
0.8532782910
seat A

0．841332300	0．10470？1679
1．13093517	＊0．0：275uncrov
0.5191747565	0.6 ± 2713 iss
O．R4：19：1497	0.1947929677
0.4714179799	0.21 ［13动3
0.0342514963	$0.57: 36 \mathrm{csiog}$
－0．11715， 6797	0.029920 .7711
－1．006－725：45	3．35：65517：54
－0．54josenocas	0.1561035632
2．7c07c1546	0.21327 .5355
－0．0295405817	0.5116479 .96
－0．6872ccs601	$0.73(6: 27): 6$
－0．56．1142541	－0．08：47－jうuss
－0．75875765？	－0．002713r．722703
1．434i88236	－0．275555040：
－0．505142541	－0．59236．29463
－0．958389537	－0．78日： 22.4452
－0．6879865601	

2.1

After 8 Iterations
TTER P
AETIT
AFTIT
$-0.0005879905689 \quad 0.0004755868021$

$$
1700.70753
$$

EPS

$$
0.008333725
$$

$$
\text { RLNGF OFX:-s } 0
$$

$$
\text { RADGE of } \mathrm{y}:-{ }^{-2} .53
$$

0.1011635701	0.751553814
0.04537058075	$1.09746,1082$
0.4501712773	0.4476080825
0.1011635701	0．75：1573n11
0.2006 .621028	－0．5076schoo
0.542793433	－6．6G05：5：1771
0.22540180956	0.02735 .719288
0.03648158235	－1．0931
0.1035961857	－a．zus8746028
0.1923131472	2．53395， 7746
0.465 .41117717	－1．023フCワ737
0.8552470348	－G． 20939278
＊ 0.1017977208	－0．735934743
－0．03176129117	－1．153937264
－0． 527933543	1.301735560
－0．F127223314	－0．795734343
－0．8185507038	－1．153999264
－0，6， 046214566	0.380937288

After 8 Iterations

> TTFAP AETIT
－ 0.00073502400010 .0006404882020
1360.498860
EPS
0.8712807531.

1．9530353452	0．09508446787
1.15097603	－0．：4srcss679
0.450657763	0.795451357
0.9361033535	0.08509446787
0.4041977811	3．136034：1738
－0．03126151713	0.1780875127
2． 2316.1075051	0.001038707509
－0．774707／463	－0．027134日7ロ198
－0．1．449730023	－0．0411127350
3．144：： 627	0．3：49316．157
0.7141347	0.3 stancoulo
－0．f．1114．34，54	0.742715×717
$0.70178: 1: 97$	00.08075017475
－0．715673716	－0．64777463113
1．521：11131	－0．4407714＊）
0.7017871537	0．今916」170，6
0.7790 .17167	－0．anisajumia
． 6611411.659	－0．7514S24．595

APPENDIX D

ANAYSIS OF THE RESIDUALS EI mu

APPENDIX D

ANALISIS OF THE RESIDUALS 81 mom

APPENDIX D

ANALYSIS OF THE RESIDUALS 81 m

APPENDIX D

ANALYSIS OF TTE RESIDUALS 81 ma

(2)

APPENDIX E

ANALYSIS OF THE RESIDUALS 105 mm

Method 1

Method 3
REGRES
$-0.00045919930720 .000379244864$
2177.75
EPS
0.8259507351
AAHEE OF I：－
RA，YCE OF

2

－1．1－－e－e－e－e－e－＊		
	$1^{-\infty}$	
＊	－$=1$	
nrceioulls	I＿－＿m－a	
	0． 3823032461	－0．8183580213
	0．327411154	－0．06284315426
	－a．0．6374月5302	－0．5712831131
	－0．n215353430	－0．379月70885
	－0．0046457786	－0．0173122063
	－0．8120001102	－1．693654043
	0.1571561039	－1．683454043
	0.5001182035254	0．431637396
	0.03773231801	0.4134373194
	0.07773151801	0.515771585
	$0.37: 07 \mathrm{CH} 083$	0.3757795243
	－0．2043664125	2．575711526\％
	－0．3043467178	－0．45月417053
	－0．3317147491	－0．4594170：3
	0.01341727002	－0．051417053
	－0．577727820s	－0．0［n＋17053
	0.03277174305	

Method 2

Method 4
RECRES
RECRE
BETA
0.03042273562550 .0004087952056

电

APPENDIX E

ANALYSIS OF THE RESIUUALS 105 mm

Method 7 Ist Iteration

APPLNDIX E

ANALYSIS OF THE RESIDUALS 105 mm

APPENDIX E

aNALYSIS OF 2HE RESIDUALS 105 mm

Hethod 4 -- Sample Size 33		
$\cdots-\ldots$ -		
\qquad		
-3.68 i. 1.42		

APPENDIX E

ANALYSIS OF THE RESIDALS 105 mm

ANALYSIS OF THE RESIDUALS 105 mm

-

APPENDIX F

ANALYSIS OF THE RESIDUALS 155 mm

Method 1

proque

nrta
-0.0003t345aso:s 0.003203460177
3136.37939
0.1162053395

SCAT A

- rfettuals

Method 2

Method 4

SOIPLOT A[:2]
-2.
${ }^{-2}$

APPENDIX F

ANALYSIS OF THE RESIDUALS 155 mm

Method 6 Ist Iteration

After 8 Iterations

RTEA P
0.0002681546540 .0002050698609

נ724.171278
0.764670193

SCA: 1
$\begin{array}{llll}\text { SCAE A } & \\ \text { RASIER OF I: } & -5 & 0 \\ \text { RAHCE OF I: } & -3 & 2\end{array}$

0.2467277787
0. 25257755 a

- 1. E77-22172
0.3100953137
- 0.0111303766 E
$0.92: 73334$
-0.0:0571:7132
- 0.074181 日! 907
1.5892657日7
$0.10000: 1774$
0.2014511475
1.304666.527
0.4591778876
-0.731802950e
- 1.1763827
-3.01097643983
-7. 713349515
-1.1763227
-5.9805162197
-0.4316320559

BOZPLOT A(:7)

Mehtod 7 lst Iteration

$?$

SCAF 1
atige oritios o

1.537724642
0.1237372177
0. 2014716:0
1.27456579

- O. Crisic.727s
- 1.0787601067
1.07146136718
0.121631
$-\frac{0}{2.797529038}$
2.777517038
-1.07470665 .3
$1.09714: 019$
0.07703011277
*2. morrt.or A(12)

APPLYDIX P

ANALYSIS OF THE RESIDUALS 155 mm

ASPENDIX F

ANALISIS OF THE RESIDALS 155 mm

电

APP:NDIX F

ANALYSIS OF TIIE RESIDUALS 195 ma

电

APPENDIX F

ANALYSIS OF THE RESIDUALS 155 mm
freutencies Sanple silf = 20

ANALYSIS OF RESIDUALS (METHCD 8)

DATA 81HI

DRTA 105:24

DATA 155 MH

APPENDIX i

ANALYSIS OF PARAMETEES K and ε

Parameter K

DATA 81MA

DATA 105MA
DATA 155 MM
Mothod 5

Method 6

Method 7

APPENDIX H
ANALYSIS OF PARAMETERS K AND ε

Parameter ε

DATA 81MH
DATA 105:M
DATA 155 MM
Mothod 5
SCAT EPSV
Rh:HET or x : 0
RAILE OF Y: 0.015240 .8163

Mathod 6
SCAT SPSV

Method 7
SCRT r.oتy

APPENDIX H

ANALYSIS OF PARNMETERS K AND ε

			81 mm			105 mm		$155 \cdots$	
Yodel	Nethod *	Method		K	ε	K	ε	K	E
2.1	1	unweighted regression deletion of all zero-probabilities		4764.308	0.351	3137.117	0.727	3126.379	0.886
2.1	2	unveiglated regrossion eluster mathoi 2		2211.733	0.718	2217.204	0.824	3386.064	0.835
2.1	3	unweighted regression cluster method 3		2474.481	0.633	2177.751	0.825	2965.181	0.855
2.1	4	unweighted regression prodidility transform by Cox $y=\ln \left(\frac{S_{i}+\frac{1}{2}\left(1-p_{i}\right)}{n_{i}}\right)$		1591.938	0.814	2029.485	0.830	2672.144	0.828
2.1	5	unweighted iterative regression $y=\ln \left(\frac{s_{i}+\frac{1}{2}\left(1-p_{i}\right)}{n_{i}}\right)$		1578.287	0.816	2014.900	0.828	2623.426	0.829
2.1	6	weighted iterative regression $\begin{aligned} & y=\frac{1}{S I G} \cdot \ln \left(\frac{s_{i}+\frac{1}{2}\left(1-p_{i}\right)}{n_{i}}\right) \\ & S I G=R^{2} \end{aligned}$		1700.707	0.808	2070.139	0.782	3704.303	0.765
2.1	7	weighted iterative regression $\begin{aligned} & y=\frac{1}{\operatorname{SIG} \cdot \ln \left(\frac{S_{i}+\frac{1}{2}\left(1-p_{i}\right)}{n_{i}}\right)} \\ & S I G=\sqrt{\frac{1-p_{i}}{{ }_{{ }_{i}} p_{i}}} \end{aligned}$		1360.498	0.871	1991.151	0.769	2349.845	0.859
2.4	8	tureighted regression prob.-transform by Cox $y=\ln \left(\frac{S_{i}+\frac{1}{2}\left(1-p_{i}\right)}{n_{i}}\right)$	K	1566.795	0.792	2163.867	0.868	2517.886	0.832

APPENDIX I

API REGRESSION RROGRAMS

NON-ITERATION METHODS

```
    \(\nabla\) REGRES
[1] \(2+362 \rho 1\)
[2] \(Z[; 1]+U\)
[3] \(2[; 2]+V\)
[4] \(\quad Z T+Q Z\)
[5.] \(\quad \operatorname{RET} A+((F(2 T+. \times Z))+. \times 2 T)+. \times Y\)
[6] \(K+\left({ }^{-1}\right) \div \operatorname{Brit}[1]\)
[7] EPS \(+K \times R E T A[2]\)
[8] YHAT+(BETA[1]×U)+(BETA[2]×V)
[9] RES C Y-YHAT
[10] \(A+362\) م1
[11] \(A[; 1]+Y\)
[12] \(A[; 2]+R E S\)
    \(\nabla\)
```

ITAR:iTION METHODS

```
    \(\nabla\) ITEP P
[1] \(S I G+1\)
\([2] \quad Y+(由((R+(0.5 \times(1-P))) \div N)) \div S I G\)
[3] \(U+U O \div S I T\)
[4] \(V+V O \div S I G\)
[5] \(2+36 \quad 2 \rho 1\)
[6] \(Z[; 1]+U\)
[7] \(2[; 2 j+V\)
[8] \(2 T+Q 2\)
[9] \(B F T T T+((\underset{C}{T}(Z T+. \times Z))+. \times Z T)+. \times Y\)
[10] \(K+\left({ }^{-1}\right) \div B \square T T M[1]\)
[11] \(E P S+K \times B E T I T[2]\)
[12] YHAT 4 (BETIT「1]×UO) \(+(B E T I T[2] \times V O)\)
[13] RFS+YC-YHAT
[14] \(A+362 \rho 1\)
[15] \(A[; 1]+Y C\)
[16] \(A[; 2]+R E S\)
    \(\nabla\)
REMARK: SIG CHANGES IN ACCORANCE TO THE DIFFERENT ITERATIVE METHODS.
```


HISTOGRAIS OF SUPPRESSION INTURVALS 81 ma

年

APPERDIX J

HISTOGRAMS OF SUPPRESSION INTERVALS 105 mm

HISTOGRAMS OF SUPPREUSION INTERVALS 155 mm

嵒

APPENDIX K

PROGRAMS FOR COMPUTING RATES OF RISE

```
Program for formula (3.54)
```

FORTRAN IV G LEVEL 21 MAIN
0001 DIMENSION TIM(500),SLA(20), RETAU(20)
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

```
        12 WRITE (6,12) (RETAU
        STOP
N=348
    READ (5,10) (SLA(I),I=1,18)
10 FORMAT (Fl0.5)
    READ (5,11)(TIM(I), I= , N)
        DO 1 I=1,18
        SUM=0.0
        DO 2 J=1,N
        C=EXP((SLA(I)*TIM(J)))
        SUM=SUM+C
        A=SUM/FLOAT (N)
        B=A-1.0
        ETAU=B/SLA(I)
        RETAU(I)=1.0/ETAU
        WRITE (6,12) (RETAU (I) , I= 1.18)
        END
```

 11 FORMAT(F10.5)
 2 CONTINUE
 1 CONTINUE
 Program for formula (3.50)
∇ LAMU
[1] $\quad L A+(L A M S \times((L A M-L A M S) * R)) \div(L A M * R)$
[2] $L A U+1 \div((1 \div L A)-(1 \div L A M S))$
∇

LIST OF PIGURES

1. Structure Of Fire Suppression process 12
2. Function $P\left(S / \theta_{0}, r\right)=\exp \left[-\frac{1}{K} r^{2}(1-\varepsilon \cos \theta)\right]$ 22
3. Isolints $r^{2}=\frac{-K \ln 0.1 \cdot i}{1-\varepsilon \cos \theta}$ 24
4. Function $P(K / r)=\exp \left(-\frac{1}{H} r^{2}\right)$ 31
5. Isolin $\in \mathrm{S}^{2}=-\mathrm{H} \cdot \mathrm{ln} \mathrm{P}(\mathrm{K} / \mathrm{r})$ 33
6. Summary of the derived formulas 38
7. Schematic Description Of The Model 41
8. Schematic Representation of The Model 49
9. Punctions $X_{2}(t)$ And $X_{f}(t)$ 54
10. Functicns $X_{Q}(t)$ And $X_{r}(t)$ 59
11. Schematic Range $\mathrm{Fof} 81,105,155 \mathrm{~mm}$ 62
12. Delєted Eatapcints 68
13. Changed Datapcints 70
14. Comparision Gamma Distribution And Data 83
15. Function $P\left(S / \theta=0^{\circ}, r\right)=\exp \left[-\frac{1}{K} r^{2}(1-\varepsilon)\right]$ 88
16. Numerical Values For $P(S), P_{k}(S)$, And $P(K)$ 92
17. Rates For The Model 93

BIBLIOGRAPHY

1. Abram, H., S., Pㅌychological Aspects $\underline{C} f$ Stress, Charles C. Thcmas, Springfield, 1970.
2. Ad HCC Group On Fire Suppression, ReEcrt of the Army Scientific Adviscry Panel,

Department Cf The Army, Washington, 1975.
3. Agrell,
J.,

Stressㅋ
Military
Implications-psychological Aspects, Procédings Of $A n$ Internaticnal Sympcsium Arranged By The Swedish Delegation For Applied Medical Defense Research, Stockhclm, 1965.
4. Appley, M. H., Trumbull, R., PSychological StIEss, M \in redith Publishing Company, New York, 1967.
5. Barr, B., Techniguts For Ircludigq Supfressivo Effects Into Lanchester Type Combat Models, M. S. Thesis, Naval Postgraduate School, Monterey, 1974.
6. Combat Developments Experimentation Command, Suppression Experiment, Final Report, Fort Crd, Califorria, 1976.
7. Cox, D. F., The Analysis of Binary Data,

Methuen \& Co. Ltd, London EC 4, .
8. De Groot, M. H., Erobability And Statistics, Addison Hesley Publishing Cowfany, Reading, Massachusetts, 1975.
9. Gaver, D. P., Lectures On Evaluating Human Eactor Datae Unpublished Notes by Mueller, M. P.,

Monterey, 1978 .
10. Gaver \quad. P., Thompson G. L., Ergqramming And Probability Models In oferations REstarche Brooks/Cole Publishing Company, Monterey, 1973.
11. Graham, C. H... Vision Anq Visual FErception, John Wiley Son, Inc., New York, 1965.
12. Grinker, R. R., Spiegel, J. P., Men Under Stress. MCGrau-Hill Eock Co. Inc., New York, 1963.
13. Hald, A., Statistical Theory With Engeneering Applications. p. , John Wiley Sons, Inc., N.Y., 1965.
 Washington D. C., 1976.
15. Headquarters, Department of The Army, \underline{M} ($6=161=1$, Washirgton D. C., 1976.
16. Katkin, E. S., EGlationshif Between
 Journal of Personality and Social Rsychology, 1965.
17. Keegan, J., The Façe of The Eattle, Fandom House Inc., New Ycrk, 1976.
18. Leibrecht, B. C., Lloyd, A. J., Field Study of Stress: Psychophysiological Measures During project SUPEX. CDEC, 1977.
19. Leibrecbt, B. C., Lloyd, A. J., O'Mara,R.A., Field Study $\underline{G} \underline{f}$ Stress: Psychological Measures During project SUPPEX, 1977.
20. Ljungberg, Stㅌ́ss: Military Implications=MEdical Aspects, Proceedings of An International Symposium Arranged By The Swedish Delegation For Appliєd Medical Defense Resєarch, Stockhclm, 1965.
21. McNeil, D. R., Interactive Data Analysis, Wiley And Sons, Inc., New York, 1977.
22. Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner, K. and Eent, D., Statistical Package Ecr The Sccial Sciences. McGraw Hill Bock Ccupany, New Ycrk, 1975.
23. Pindyck, R. S., Rubinfeld, D. L., Econometric And Eccncmic Forecasts, MCGraw-Hill Eook Company, New York, 1976.
24. Reddoch, R., Lanchester Cowbat Models fith Super Firt And $\angle \underline{O} \underline{\underline{r}}$ Unit Disintegiation. Master's Thesis, Naval Postgraduat \in School, Monterey, 1973.
25. Richards, F. R., Lectures On Data Analysis , Unpublished Notes By Pietsch K. H., Mcnterey, 1977.
26. Sprent, P., Models In Regression, Barnes And Noble, Inc., Londcn, 1969.
27. Swann, E. G., Eackground And $\underline{\underline{A} p p r o a c h ~ F o r ~ S t u d y ~ o f ~}$ Cowbet Suppression, Naval Meapcns Center, China Lake, California, 1972.
28. Taylcr, J. G., Attrition Modeliing, Naval Postgraduate Schocl, Monterey, 1978.
29. Taylor, J. G. and Brovn, G. G., Numerical Determination of the Parity Conditicg Parameter for Lanchester Type Equations of Modern warefare, Naval fcstgraduat \in School, Monterey, 1977.
30. Taylor, J. G. and Brown, G. G., Optimal Commitment of Forces In Some Lanchester Type Combat Models, Naval Pcstgraduat \in School, Monterey, 1976.
31. Taylor, J. G. and Brown, G. G., A Tatle of Lanchester Clifforg Schatfli functions, Naval Postgraduate

Schccl, Monterey, 1977.
 For Variable CoEfficient Lanchester IqEe Equaticns of Modern Waffare, Naval postgraduate Schcol; Monterey, 1974.
33. US Army CDEC, Supfression Experimentaticn Data Analysis Report, Fort Ord, Califcrnia, 1976
34. US Army CDEC, Suppression Experiment, Final RGfort, Fort Ord, California, 1977
35. Weltmann, G., Christianson, R. A., Egstrom, G. H., Hugan Factors, 1965 .
36. Wientr , F., DíG Armeen Der NAIO Staaten, Verlag Carl Ueberrsuter, Wien, 1968.
37. Yale, \boldsymbol{H}. W., Mills, D. L., An Exploratory Study of Human Reactions To Fragmentation Stanford Reasurch Institute, 1975.
38. Young, P. T., Mctivation And Emotion. J. Wiley \& Sons. Inc., New York. 1961.

INITIAL DISTRIBUTION LIST

No.Copies

1. Defence Documentation Center
Cameron Station
Alexandria, Virginia 22314
2. Heeresamt BW
Trajanstrasse 128
Koeln, hest-Germany
3. DOKZENT BW

2
Friedrich Eber-allee 34
531 Eonr, fest-Germany
4. Department Chairman, Code 55

Department of Operations Research
Naval postgraduat \in School
Monterey, Califoria 93940
5. Prof. G.K. Poock, Code 55Pk

Department of Operations Research
Naval pcstgraduate School
Monterey, California 93940
6. Prof. D.P. Gaver, Code 55Gv

Department of Operations Research
Naval pcstgraduate School
Monterey, California 93940
7. Library, Code 0142

Naval Ecstgraduat \in School
Monterey, California 93940
8. Prof. [r. R. K. Huber

Hochschule BW Muenchen
Fachterfich Information
Herner-Heisenberg-Heg 39
8014 Neubiberg
9. Ass. Prcf. J.G. Taylor Code 55ty

2
Department of Operations Research
Naval pcstgraduat \in School
Monterey, Califcrnia 93940
10. Dr. M. Eryson

Technical Advisor, US Army
CDEC
Fort Ord, California 93941
11. Dr. D. Mac Donald

Executive Vice-President, BDM
CDEC
Fort Ord, California 93941
12. LTC. R. S. Miller, Code 55Mu

Department of Operation: Research
Naval pcstgraduate School
Monterey, California 93940
13. Commander US Army Combat Developments

Experimentation Command
ATEC-PL-M
Fort Ord, California 93941
14. Capt Michael Peter Mueller, FGA (student)

23595 Rcw Place
Carmel, California 93923
15. Major Karl-Heinz Pietsch, FGA (student)

1153 Wildcat Canyon
Pebtle Eeach, California 93953

[^0]: \#

 θ in degree

